节点文献
一维随机Landau-Lifshitz-Bloch方程程的平均化原理
Averaging principle for 1D stochastic Landau-Lifshitz-Bloch equation
【摘要】 平均化原理是研究非线性动力系统定性行为的有效方法.主要研究一维随机Landau-Lifshitz-Bloch方程(SLLBE)的平均化原理,在一些假设条件下,通过利用Khasminskii时间离散化方法,证明了在均方意义下,随机Landau-Lifshitz-Bloch方程的解收敛到平均化随机系统的解.
【Abstract】 In this paper, we study the strong averaging principle for 1D stochastic Landau-LifshitzBloch equation(SLLBE). The averaging principle is an effective method for studying the qualitative analysis of nonlinear dynamical systems. Under some assumptions, utilising Khasminkii′s time discretization approach, we show the solution of SLLBE can be approximated by the solutions to averaged stochastic systems in the sense of mean square.
【关键词】 随机Landau-Lifshitz-Bloch方程;
平均化原理;
强收敛;
【Key words】 stochastic Landau-Lifshitz-Bloch equation; averaging principle; strong convergence;
【Key words】 stochastic Landau-Lifshitz-Bloch equation; averaging principle; strong convergence;
【基金】 国家自然科学基金(11901005,12071003);安徽省自然科学基金(2008085QA20)
- 【文献出处】 纯粹数学与应用数学 ,Pure and Applied Mathematics , 编辑部邮箱 ,2022年03期
- 【分类号】O211.6;O441.2
- 【下载频次】24