节点文献

一种智能车图像采集减振平台设计与仿真分析

Design and Simulation of a Damping Platform for Image Data Collecting Device on an Intelligent Vehicle

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 邵泽鹏罗建南喻凡

【Author】 SHAO Zepeng;LUO Jiannan;YU Fan;Institute of Intelligent Vehicles, Shanghai Jiaotong University;School of Mechanical and Electric Engineering and Automation, Shanghai University;

【通讯作者】 喻凡;

【机构】 上海交通大学智能汽车研究所上海大学机电工程与自动化学院

【摘要】 作为智能汽车感知融合中的重要组成部分,图像采集信息平台的稳定性对图像采集效果至关重要。针对车载相机等灵敏元件对车载图像信息采集装置减振平台的需求,结合实际对结构体质量和动行程等条件约束,所设计的智能车图像信息采集装置减振平台通过调节模型参数以适应在低频区间的减振需求。将路面噪声通过车辆悬架的减振后的输出作为最终输入,通过对所建立的减振试验平台进行调参,研究结构参数对平台减振性能的影响,尤其是在低频区减振效果。通过调节相关系统参数能较好的抑制悬架减振后的低频振动。为了进一步优化减振系统性能且增强低频抑制效果,在Stewart平台基础上又引入惯容器元件,通过仿真分析进一步考察平台设计及优化方案。

【Abstract】 Image data collecting and processing device is a significant part for perception fusion of intelligent vehicles.Its stability against vibration is vital for the image collection performance. For the requirement of on-board sensitive components like cameras, the on-board damping platforms should have the performance to reduce vibration in low frequency under the constraints of system mass and structure limitations. In this paper, the model parameters of the Stewart damping platform are adjusted to realize stronger damping in low frequency. The road noise signal is input into the vehicle’s suspension system for damping analysis, and its output is used as the input of the platform. The model parameters are adjusted through the established vibration reduction test platform. Then, the influence of the vehicle’s suspension system is simulated and analyzed. The influence of structure parameters on the damping effect of the Stewart platform in low frequency is explored through simulation. In order to further optimize the performance of the damping system, especially in low-frequency range, an inerter is introduced for further research and optimization of the platform.

  • 【文献出处】 噪声与振动控制 ,Noise and Vibration Control , 编辑部邮箱 ,2021年05期
  • 【分类号】U463.6
  • 【下载频次】173
节点文献中: 

本文链接的文献网络图示:

本文的引文网络