节点文献

基于持续同调机器学习的尾轴承黏滑振动研究

Stick-Slip Vibration of Water-Lubricated Rubber Stern Tube Bearing Based on Persistent Homology Based Machine Learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张圣东龙志林金勇刘正林闫志敏杨秀英

【Author】 ZHANG Shengdong;LONG Zhilin;JIN Yong;LIU Zhenglin;YAN Zhimin;YANG Xiuying;College of Civil Engineering and Mechanics,Xiangtan University;School of Energy and Power Engineering,Wuhan University of Technology;Library,Jiujiang University;

【通讯作者】 龙志林;

【机构】 湘潭大学土木工程与力学学院武汉理工大学能源与动力工程学院九江学院图书馆

【摘要】 为了研究尾轴承黏滑振动,首先,采用机器视觉技术采集水润滑橡胶尾轴承黏滑振动图像;其次,运用持续同调机器学习及单纯复形同调群分析图像,计算振动图像单纯复形的同调获得相应的条码图;然后,基于条码图获取振动图像的拓扑特征;最后,用改进型支持向量机机器学习法对拓扑特征进行研究,完成水润滑橡胶尾轴承黏滑振动鸣音的分类与识别。研究表明,最长贝蒂条码的长度与振动密切相关,可以有效预警鸣音,并建立了鸣音过程的智能化描述,为研究尾轴承黏滑振动提供一种新的思路。

【Abstract】 In order to study stick-slip vibration of water-lubricated rubber stern tube bearing,firstly,stick-slip vibration images are collected by machine vision technology. Secondly,images are analyzed by the methods of persistent homology based machine learning and simplicial complex,the corresponding barcodes are obtained by calculating the homology of the vibration images’ simple complex. Then,the topological characteristics of the vibration images are obtained based on the barcode images. Finally,the improved support vector machine learning is used to study the topological features,the classification and identification of the stick-slip vibration of water-lubricated rubber stern tube bearing are completed. The results have shown that the length of the longest Betti barcode is closely related to vibration,which can effectively warn the beep,establish an intelligent description of the beep process,and provide a new idea for stick-slip vibration of the stern bearing.

【基金】 江西省科技厅重点研发计划联合资助项目(20192BBEL50028)
  • 【文献出处】 振动.测试与诊断 ,Journal of Vibration,Measurement & Diagnosis , 编辑部邮箱 ,2021年04期
  • 【分类号】TH133.3;TH113.1
  • 【下载频次】158
节点文献中: 

本文链接的文献网络图示:

本文的引文网络