节点文献
求解非线性脉冲延迟微分方程的高阶数值方法
A High Order Numerical Method for Solving Nonlinear Impulsive Delay Differential Equations
【摘要】 针对一类非线性脉冲延迟微分方程,首先将其转化为等价的积分方程,然后利用修正的block-by-block方法对其离散化,得到了求解问题的高阶数值方法.最后利用数学归纳法证明了该数值方法是4阶收敛的,数值试验的结果验证了所获理论的正确性.
【Abstract】 For a class of nonlinear impulsive delay differential equation, firstly, it is transformed into an equivalent integral equation, and then the modified block-by-block method is used to discretize the equation, and a high order numerical method for solving the problem is obtained. Finally, we prove that the method is convergent of the order 4 by mathematical induction. Numerical experiments verify the correctness of the theoretical results.
【关键词】 脉冲延迟微分方程;
高阶数值方法;
block-by-block方法;
收敛性;
【Key words】 Impulsive delay differential equation; High order numerical method; Block-by-block method; Convergence;
【Key words】 Impulsive delay differential equation; High order numerical method; Block-by-block method; Convergence;
【基金】 国家自然科学基金(11571291);湖南省教育厅重点项目(20A484)
- 【文献出处】 应用数学 ,Mathematica Applicata , 编辑部邮箱 ,2021年04期
- 【分类号】O241.8
- 【下载频次】78