节点文献

基于标签量信息的联邦学习节点选择算法

Node selection based on label quantity information in federated learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 马嘉华孙兴华夏文超王玺钧谭洪舟朱洪波

【Author】 MA Jiahua;SUN Xinghua;XIA Wenchao;WANG Xijun;TAN Hongzhou;ZHU Hongbo;Sun Yat-sen University;Nanjing University of Posts and Telecommunications;

【通讯作者】 孙兴华;

【机构】 中山大学南京邮电大学

【摘要】 针对节点数据分布差异给联邦学习算法性能带来不良影响的问题,提出了一个基于标签量信息的节点选择算法。算法设计了一个关于节点标签量信息的优化目标,考虑在一定时耗限制下选择标签分布尽可能均衡的节点组合优化问题。根据节点组合的综合标签分布与模型收敛的相关性,新算法降低了全局模型的权重偏移上界以改善算法的收敛稳定性。仿真验证了新算法与现有的节点选择算法相比拥有更高的收敛效率。

【Abstract】 Aiming at the problem that the difference of node data distribution has adverse effect on the performance of federated learning algorithm, a node selection algorithm based on label quantity information was proposed. An optimization objective based on the label quantity information of nodes was designed, considering the optimization problem of selecting the nodes with balanced label distribution under a certain time consumption limit. According to the correlation between the aggregated label distribution of selected nodes and the convergence of the global model, the upper bound of the weight divergence of the global model was reduced to improve the convergence stability of the algorithm. Simulation results shows that the new algorithm had higher convergence efficiency than the existing node selection algorithm.

【基金】 国家重点研发计划(No.2019YFE0114000);国家自然科学基金资助项目(No.92067201);江苏省自然科学基金资助项目(No.BK20212001);广东省基础与应用基础研究基金资助项目(No.2021A1515012631,No.2019A1515011906)~~
  • 【文献出处】 物联网学报 ,Chinese Journal on Internet of Things , 编辑部邮箱 ,2021年04期
  • 【分类号】TP181
  • 【被引频次】3
  • 【下载频次】319
节点文献中: 

本文链接的文献网络图示:

本文的引文网络