节点文献

一种改进自适应永磁同步电机永磁磁链观测算法

An Improved Permanent Magnet Magnetic Link Observation Algorithm for Adaptive Permanent Magnet Synchronous Motor

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张杰韩如成

【Author】 ZHANG Jie;HAN Ru-cheng;College of Electronic and Information Engineering,Taiyuan University of Science and Technology;

【通讯作者】 韩如成;

【机构】 太原科技大学电子信息工程学院

【摘要】 为了提高永磁同步电机永磁磁链观测器的观测性能,提出了一种基于双重自适应无迹卡尔曼滤波的永磁磁链观测算法。由于无迹卡尔曼滤波在鲁棒性方面存在缺陷,为了对观测性能有所改进,算法从观测干扰、状态噪声两方面对算法进行优化,即利用缩小因子,对状态噪声进行缩小;利用自适应矩阵,削弱观测误差,减小观侧干扰对系统的影响。对比改进算法与传统算法的观测磁链效果,在受到外部干扰时,改进算法在观测磁链波动幅度方面比传统观测器更小、在稳定时间方面比传统观测器更少。但在加入改进自适应算法后,会导致计算量增加,所以在采样算法上采用最小斜度采样进行优化。通过对采样算法进行优化,使单次算法运算时间缩短20.56%,增强磁链观测器观测实时性。

【Abstract】 In order to improve the observation performance of permanent magnet flux observer of permanent magnet synchronous motor,an double permanent magnetic flux linkage observation algorithm based on adaptive unscented Kalman filter is proposed. In order to improve the observation performance,the algorithm is optimized from observation interference and state noise because of the defects in the robustness of the untracked kalman filter,the reduction factor is used to reduce the state noise; the adaptive matrix is used to weaken the observation error and reduce the influence of the side interference on the system. Compared with the traditional algorithm,the improved algorithm has better performance in terms of the amplitude of the observed flux fluctuations and less in terms of the stability time than the traditional observer when subjected to external interference. However,when the improved adaptive algorithm is added,the computational burden will increase,so the minimum slope sampling is used to optimize the sampling algorithm. By optimizing the sampling algorithm,the calculation time of the single algorithm is shortened by 20. 56 %,and the real-time observation of the flux observer is enhanced.

  • 【文献出处】 太原科技大学学报 ,Journal of Taiyuan University of Science and Technology , 编辑部邮箱 ,2021年01期
  • 【分类号】TM341
  • 【被引频次】2
  • 【下载频次】154
节点文献中: 

本文链接的文献网络图示:

本文的引文网络