节点文献

高速列车运行调整策略的晚点恢复聚类

Delay Recovery Clustering of High Speed Train Operation Adjustment Strategy

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 侯亚飞王斌黄平文超蒋朝哲罗洁

【Author】 HOU Yafei;WANG Bin;HUANG Ping;WEN Chao;JIANG Chaozhe;LUO Jie;Communications Planning & Design Institute,CCCC First Highway Consultants Co Ltd;National Engineering Laboratory for Comprehensive Transportation Big Data Application Technology, Southwest Jiaotong University;

【通讯作者】 文超;

【机构】 中交第一公路勘察设计研究院有限公司交通规划设计院西南交通大学综合交通大数据应用技术国家工程实验室

【摘要】 列车运行策略能够具有不同的晚点恢复效果,研究高速列车不同运行调整策略的晚点恢复特性将能为智能调度决策提供依据,通过对不同列车运行调整策略的晚点恢复聚类,分析调整策略的晚点恢复分布特征,运用Pearson相关系数研究晚点恢复、影响晚点恢复效果的晚点时长变量、计划冗余时间变量的相关性,选用K-Means算法研究不同调整策略下车站和区间的晚点恢复效果的聚类问题,聚类结果表明不同列车运行调整策略下的晚点恢复效果可以较明显区分。

【Abstract】 Train operation strategies can have different delay recovery effects. Studying the delay recovery characteristics of different operation adjustment strategies of high speed trains will provide a basis for intelligent dispatching decisions. The delay recovery distribution characteristics of adjustment strategies are analyzed through the delay recovery clustering of different train operation adjustment strategies. Pearson correlation coefficient is used to study the correlation among delay recovery, delay duration variable affecting the delay recovery effects and planned redundancy time variable. K-Means algorithm is selected to study the clustering problem of delay recovery effects of stations and sections under different adjustment strategies. The clustering results show that the delay recovery effects under different train operation adjustment strategies can be clearly distinguished.

【基金】 四川省科技厅应用基础研究项目(2018JY0567);国家自然科学基金资助项目(71871188、U1834209)
  • 【分类号】U292.4
  • 【下载频次】198
节点文献中: 

本文链接的文献网络图示:

本文的引文网络