节点文献

基于因子图模型的用户可信度评估

User Credibility Evaluation Method Based on Factor Graph Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 白昀蔡皖东

【Author】 BAI Yun;CAI Wandong;School of Computer Science and Engineering,Northwestern Polytechnical University;

【机构】 西北工业大学计算机学院

【摘要】 为克服传统方法在缺少用户个人信息及发布内容的情况下无法有效地评估用户可信度问题,提出基于评论反馈信息和信任关系的用户可信度因子图模型(UFGM)。该模型将信任关系和评论反馈对用户可信度评估的影响形式化为一个概率模型,并提出半监督分类的学习方法构建模型。在Extended Epinions数据集上验证了模型的有效性,并发现信任关系比评论反馈更易对用户可信度评估产生积极影响。与传统算法相比,UFGM能在缺少用户描述信息及评论信息的情况下将用户可信度评估的准确度提高12%~29%。

【Abstract】 In order to overcome the inability of traditional methods to effectively evaluate user credibility in the absence of user personal information and published content,a user credibility factor graph model(UCFGM)based on comment feedback and trust relationship is proposed, which formalized the influence of trust relationship and comment feedback on user credibility evaluation into a probability model,and proposed a semisupervised classification learning method to build the model. The effectiveness of the model is verified on the Extended Epinions dataset,and it is found that the trust relationship is more likely to have a positive impact on user credibility evaluation than comment feedback.Compared with traditional algorithms, UCFGM can improve the accuracy of user credibility evaluation by 12%to 29% in the absence of user description and comment information.

【基金】 陕西省教育厅专项科学研究计划(19JK0526);榆林市科技计划项目(2016-24-4);陕西省科技厅专项科学研究计划(2021JQ-576)
  • 【文献出处】 同济大学学报(自然科学版) ,Journal of Tongji University(Natural Science) , 编辑部邮箱 ,2021年06期
  • 【分类号】F49;G252
  • 【下载频次】210
节点文献中: 

本文链接的文献网络图示:

本文的引文网络