节点文献
微扰动和混合变异的差分生物地理学优化算法
Differential biogeography optimization algorithm based on micro-perturbation and mixed variation
【摘要】 为增强生物地理学优化算法(biogeography-based optimization,BBO)的优化能力并克服其不能很好平衡开发能力与避免陷入局部最优解之间的矛盾,提出基于微扰动和混合变异的差分生物地理学优化算法(differential biogeography optimization algorithm based on micro-perturbation and mixed variation,MDEBBO)。引入差分变异算子和自适应的微扰动因子来改进迁移算子,使算法朝着最优解快速移动,提高算法的查找精度。采用混合变异算子代替原变异算子,在迭代前期算法具有良好的全局探索能力,在后期具有较优的局部开发性。基准测试函数的仿真结果表明了MDEBBO算法的有效性。通过MDEBBO算法对Richards模型进行参数估计预测谷氨酸菌体生长浓度,实验结果表明,MDEBBO算法较对比算法更适用于Richards模型的参数估计。
【Abstract】 To enhance the optimization ability of biogeography-based optimization algorithm(BBO)and to overcome the contradiction between balancing the development ability and avoiding falling into a local optimal solution,a differential biogeography optimization algorithm based on micro-perturbation and mixed mutation(MDEBBO)was presented.The differential mutation operator and adaptive perturbation factor were introduced to improve the migration operator,which made the algorithm move toward the optimal solution quickly and improved the search accuracy of the algorithm.The hybrid mutation operator was used to replace the original mutation operator,which made the algorithm have good global exploration ability at the early stage of iteration and better local development at the later stage.Results of simulation experiments based on benchmark functions show the effectiveness of the MDEBBO algorithm.The parameters of Richards model were estimated using MDEBBO algorithm to predict the growth concentration of glutamic acid bacteria.Experimental results show that the MDEBBO algorithm is more suitable for the parameters estimation of the Richards model than the comparison algorithm.
【Key words】 biogeography-based optimization; differential mutation operator; micro-perturbation factor; mixed mutation; parameter estimation;
- 【文献出处】 计算机工程与设计 ,Computer Engineering and Design , 编辑部邮箱 ,2021年02期
- 【分类号】TP18
- 【被引频次】2
- 【下载频次】202