节点文献

基于BP神经网络的飞行计划优化算法研究

Research on Optimization Algorithm of Flight Plan Based on BP Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨军利王宁

【Author】 YANG Junli;WANG Ning;Civil Aviation Flight University of China;

【机构】 中国民用航空飞行学院

【摘要】 本文针对传统飞行计划算法迭代次数多、时间长等问题,研究了利用BP神经网络缩短飞行计划计算时间的可行性。在传统已知起飞重量飞行计划算法的基础上,通过BP神经网络对主航段下降顶点重量的迭代初值进行预估,减少了迭代次数。使用MATLAB编程构建训练网络,并与传统飞行计划算法程序进行整合,编写了飞行计划优化算法程序。验证计算结果表明,构建的优化算法与传统算法对比具有同等精度,计算时间显著缩短,说明将BP神经网络方法运用到飞行计划计算是可行的。

【Abstract】 In view of the many iterations and long calculation time of traditional flight planning algorithms, the feasibility of using BP neural network to shorten the flight planning calculation time is studied. On the basis of the traditional flight plan algorithm with known takeoff weight, the initial iterative value of weight at top of descent of the main segment is estimated through the BP neural network, which reduces the number of iterations. A flight planning optimization algorithm program is developed by using MATLAB to build a training network and integrating it with traditional flight planning algorithm program. The verification calculation results show that the optimization algorithm has the same accuracy as the traditional algorithm, and the calculation time is significantly shortened, which indicates that it is feasible to apply the BP neural network method in flight plan calculation.

【基金】 国产民机飞机性能软件开发关键技术研究(ZJ2015-04)
  • 【文献出处】 民航学报 ,Journal of Civil Aviation , 编辑部邮箱 ,2021年02期
  • 【分类号】V35
  • 【被引频次】1
  • 【下载频次】123
节点文献中: 

本文链接的文献网络图示:

本文的引文网络