节点文献
高盐矿井水深部转移存储介质特征与水动力演化规律
Medium characteristics and hydrodynamic evolution law of high salinity mine water recharge in deep well
【摘要】 高盐矿井水处理及排放是近几年影响煤炭高效开采的重要因素之一,选择开采煤层底板下深部适当的含水层,将高盐矿井水进行异位转移存储是一种值得探索的矿井水排放减量方法。以鄂尔多斯盆地X矿为例,分析认为开采煤层以下宝塔山砂岩和深层刘家沟组砂岩地层具备转移存储空间。采取压汞实验和岩石力学分析研究2组地层介质特征;采用水位自然恢复试验、压水试验和数值模拟等手段研究水文地质参数和水动力场特征。结果表明:宝塔山砂岩孔隙率为6.57%~19.89%,储水潜力大但距离开采煤层过近,转移存储矿井水可能引起底板突水威胁,现今开采阶段不考虑作为转移存储目的层;刘家沟组孔隙率为4.18%~7.49%,原始状态下渗透系数为5.31×10–6 m/d,注水压裂后为0.008 14~0.015 27 m/d,渗透能力大幅提升并可保持稳定;MODFLOW模拟结果表明,刘家沟组含水层在长期转移存储矿井水方面具备较好前景。
【Abstract】 The treatment and discharge of high salt mine water is one of the important factors affecting efficient coal mining in recent years. It is a worth exploring method to reduce the discharge of mine water by selecting the appropriate aquifer under the floor of the coal seam and transferring the high salt mine water to other places. Taking the X mine in the Ordos Basin as an example, the Baotashan sandstone and the deep Liujiagou Formation sandstone formation below the coal seam have transfer storage space. By mercury intrusion experiment and rock mechanics analysis, the two groups of formations were analyzed for medium characteristics; the water level natural recovery test, water pressure test and numerical simulation were used to study the hydrogeological parameters and hydrodynamic field. The research results show that Baotashan sandstone has a porosity of 6.57%-19.89%, which has great water storage potential but is too close to the mining coal seam. The transfer and storage of mine water may cause the threat of water inrush from the floor, so the current mining stage is not considered as a transfer storage layer.The permeability of Liujiagou Formation is 4.18%-7.49% and the permeability coefficient is 5.31×10-6 m/d in the original state. After water injection and fracturing, the hydrogeological parameters of the Liujiagou Formation are 0.008 14-0.015 27 m/d. The permeability is greatly improved and can be maintained in a stable state. MODFLOW numerical simulation results show that the Liujiagou Formation has a good prospect in the long-term transfer and storage of mine water.
【Key words】 mine water treatment; transfer mine water storage; media characteristics; hydraulic fracturing; Ordos Basin;
- 【文献出处】 煤田地质与勘探 ,Coal Geology & Exploration , 编辑部邮箱 ,2021年05期
- 【分类号】TD74
- 【被引频次】1
- 【下载频次】112