节点文献

Antineutrino energy spectrum unfolding based on the Daya Bay measurement and its applications

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 安丰鹏A.B.BalantekinM.BishaiS.Blyth曹国富曹俊常劲帆张昀陈和生陈少敏陈羽陈义学程捷成兆侃J.J.Cherwinka朱明中J.P.CummingsO.Dalager邓凡水丁雅韵M.V.DiwanT.DohnalD.DolzhikovJ.DoveM.Dvo?ákD.A.DwyerJ.P.GalloM.Gonchar龚光华宫辉M.Grassi顾文强郭竞渊郭磊郭新恒郭宇航郭子溢R.W.HackenburgS.Hans何苗K.M.Heeger衡月昆贺远强熊怡胡貝楨胡健润胡涛胡焯钧黄翰雄黄金浩黄性涛黄永波P.HuberD.E.Jaffe任國綸季筱璐季向盼R.A.JohnsonD.Jones康丽S.H.KettellS.KohnM.KramerT.J.LangfordJ.Lee18李曉菁雷瑞霆R.Leitner梁干庄李飞李慧玲李进京李秋菊李茹慧黎山峰S.C.Li李卫东李小男李学潜李玉峰李志兵梁昊林政儒林贵林林盛鑫凌家杰J.M.LinkL.LittenbergB.R.Littlejohn刘金昌刘江来刘佳熙陆昌国路浩奇陆锦标马帮争马续波马骁妍马宇倩R.C.MandujanoC.MarshallK.T.Mc DonaldR.D.Mc Keown孟月J.NapolitanoD.NaumovE.NaumovaT.M.T.NguyenJ.P.Ochoa-RicouxA.Olshevskiy潘孝儒J.ParkS.Patton彭仁杰潘振声齐法制祁鸣钱鑫N.Raper任杰C.Morales RevecoR.RoseroB.Roskovec阮锡超H.Steiner孙吉良T.TmejK.Treskov謝雲皓C.E.TullB.VirenV.Vorobel王正祥王俊王萌王乃彦王瑞光王为王维王玺王玉漫王贻芳王铮王喆王志民魏瀚宇韦良红温良剑K.WhisnantC.G.White黄显诺E.Worcester吴帝儒武方亮吴群吴文杰夏冬梅谢章权邢志忠许杭锟徐吉磊徐彤薛涛杨长根杨雷杨玉梓姚海峰叶梅叶铭芳杨炳麟余泓钊于泽源岳保彪V.Zavadskyi曾珊曾裕达占亮张超张飞洋张宏浩张家文张清民张石其张玄同张玉美张一心张园园张志坚张子平张智勇赵洁赵润泽周莉庄红林邹佳恒

【Author】 F.P.An;A.B.Balantekin;M.Bishai;S.Blyth;G.F.Cao;J.Cao;J.F.Chang;Y.Chang;H.S.Chen;S.M.Chen;Y.Chen;Y.X.Chen;J.Cheng;Z.K.Cheng;J.J.Cherwinka;M.C.Chu;J.P.Cummings;O.Dalager;F.S.Deng;Y.Y.Ding;M.V.Diwan;T.Dohnal;D.Dolzhikov;J.Dove;M.Dvo?ák;D.A.Dwyer;J.P.Gallo;M.Gonchar;G.H.Gong;H.Gong;M.Grassi;W.Q.Gu;J.Y.Guo;L.Guo;X.H.Guo;Y.H.Guo;Z.Guo;R.W.Hackenburg;S.Hans;M.He;K.M.Heeger;Y.K.Heng;Y.K.Hor;Y.B.Hsiung;B.Z.Hu;J.R.Hu;T.Hu;Z.J.Hu;H.X.Huang;J.H.Huang;X.T.Huang;Y.B.Huang;P.Huber;D.E.Jaffe;K.L.Jen;X.L.Ji;X.P.Ji;R.A.Johnson;D.Jones;L.Kang;S.H.Kettell;S.Kohn;M.Kramer;T.J.Langford;J.Lee;J.H.C.Lee;R.T.Lei;R.Leitner;J.K.C.Leung;F.Li;H.L.Li;J.J.Li;Q.J.Li;R.H.Li;S.Li;S.C.Li;W.D.Li;X.N.Li;X.Q.Li;Y.F.Li;Z.B.Li;H.Liang;C.J.Lin;G.L.Lin;S.Lin;J.J.Ling;J.M.Link;L.Littenberg;B.R.Littlejohn;J.C.Liu;J.L.Liu;J.X.Liu;C.Lu;H.Q.Lu;K.B.Luk;B.Z.Ma;X.B.Ma;X.Y.Ma;Y.Q.Ma;R.C.Mandujano;C.Marshall;K.T.Mc Donald;R.D.Mc Keown;Y.Meng;J.Napolitano;D.Naumov;E.Naumova;T.M.T.Nguyen;J.P.Ochoa-Ricoux;A.Olshevskiy;H.-R.Pan;J.Park;S.Patton;J.C.Peng;C.S.J.Pun;F.Z.Qi;M.Qi;X.Qian;N.Raper;J.Ren;C.Morales Reveco;R.Rosero;B.Roskovec;X.C.Ruan;H.Steiner;J.L.Sun;T.Tmej;K.Treskov;W.-H.Tse;C.E.Tull;B.Viren;V.Vorobel;C.H.Wang;J.Wang;M.Wang;N.Y.Wang;R.G.Wang;W.Wang;W.Wang;X.Wang;Y.Wang;Y.F.Wang;Z.Wang;Z.Wang;Z.M.Wang;H.Y.Wei;L.H.Wei;L.J.Wen;K.Whisnant;C.G.White;H.L.H.Wong;E.Worcester;D.R.Wu;F.L.Wu;Q.Wu;W.J.Wu;D.M.Xia;Z.Q.Xie;Z.Z.Xing;H.K.Xu;J.L.Xu;T.Xu;T.Xue;C.G.Yang;L.Yang;Y.Z.Yang;H.F.Yao;M.Ye;M.Yeh;B.L.Young;H.Z.Yu;Z.Y.Yu;B.B.Yue;V.Zavadskyi;S.Zeng;Y.Zeng;L.Zhan;C.Zhang;F.Y.Zhang;H.H.Zhang;J.W.Zhang;Q.M.Zhang;S.Q.Zhang;X.T.Zhang;Y.M.Zhang;Y.X.Zhang;Y.Y.Zhang;Z.J.Zhang;Z.P.Zhang;Z.Y.Zhang;J.Zhao;R.Z.Zhao;L.Zhou;H.L.Zhuang;J.H.Zou;Institute of Modern Physics, East China University of Science and Technology;University of Wisconsin;Brookhaven National Laboratory;Department of Physics, Nnational Taiwan University;Institute of High Energy Physics;National United University;Department of Engineering Physics, Tsinghua University;Shenzhen University;Sun Yat-Sen (Zhongshan) University;North China Electric Power University;Chinese University of Hong Kong;Siena College;Department of Physics and Astronomy, University of California;University of Science and Technology of China;Charles University, Faculty of Mathematics and Physics;Joint Institute for Nuclear Research;Department of Physics, University of Illinois at Urbana-Champaign;Lawrence Berkeley National Laboratory;Department of Physics, Illinois Institute of Technology;Beijing Normal University;Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi’an Jiaotong University;Department of Chemistry and Chemical Technology, Bronx Community College;Wright Laboratory and Department of Physics, Yale University;China Institute of Atomic Energy;Shandong University;Guangxi University;Center for Neutrino Physics, Virginia Tech;Institute of Physics, NCTU;Department of Physics, University of Cincinnati;Department of Physics, College of Science and Technology, Temple University;Dongguan University of Technology;Department of Physics, University of California;Department of Physics, The University of Hong Kong;School of Physics, Nankai University;Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology;Joseph Henry Laboratories, Princeton University;California Institute of Technology;College of William and Mary;Nanjing University;China General Nuclear Power Group;College of Electronic Science and Engineering, National University of Defense Technology;Iowa State University;Chongqing University;

【机构】 Institute of Modern Physics, East China University of Science and TechnologyUniversity of WisconsinBrookhaven National LaboratoryDepartment of Physics, Nnational Taiwan UniversityInstitute of High Energy PhysicsNational United UniversityDepartment of Engineering Physics, Tsinghua UniversityShenzhen UniversitySun Yat-Sen (Zhongshan) UniversityNorth China Electric Power UniversityChinese University of Hong KongSiena CollegeDepartment of Physics and Astronomy, University of CaliforniaUniversity of Science and Technology of ChinaCharles University, Faculty of Mathematics and PhysicsJoint Institute for Nuclear ResearchDepartment of Physics, University of Illinois at Urbana-ChampaignLawrence Berkeley National LaboratoryDepartment of Physics, Illinois Institute of TechnologyBeijing Normal UniversityDepartment of Nuclear Science and Technology, School of Energy and Power Engineering, Xi’an Jiaotong UniversityDepartment of Chemistry and Chemical Technology, Bronx Community CollegeWright Laboratory and Department of Physics, Yale UniversityChina Institute of Atomic EnergyShandong UniversityGuangxi UniversityCenter for Neutrino Physics, Virginia TechInstitute of Physics, NCTUDepartment of Physics, University of CincinnatiDepartment of Physics, College of Science and Technology, Temple UniversityDongguan University of TechnologyDepartment of Physics, University of CaliforniaDepartment of Physics, The University of Hong KongSchool of Physics, Nankai UniversityDepartment of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and CosmologyJoseph Henry Laboratories, Princeton UniversityCalifornia Institute of TechnologyCollege of William and MaryNanjing UniversityChina General Nuclear Power GroupCollege of Electronic Science and Engineering, National University of Defense TechnologyIowa State UniversityChongqing University

【摘要】 The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Day a Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Day a Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2% precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.

【Abstract】 The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Day a Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Day a Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2% precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.

【基金】 Supported in part by the Ministry of Science and Technology of China;the U.S. Department of Energy;the Chinese Academy of Sciences;the CAS Center for Excellence in Particle Physics;the National Natural Science Foundation of China;the Guangdong provincial government;the Shenzhen municipal government;the China General Nuclear Power Group;the Research Grants Council of the Hong Kong Special Administrative Region of China;the Ministry of Education in TW;the U.S. National Science Foundation;the Ministry of Education,Youth,and Sports of the Czech Republic;the Charles University Research Centre UNCE;the Joint Institute of Nuclear Research in Dubna,Russia;the National Commission of Scientific and Technological Research of Chile
  • 【文献出处】 Chinese Physics C ,中国物理C , 编辑部邮箱 ,2021年07期
  • 【分类号】O572.321
  • 【下载频次】49
节点文献中: 

本文链接的文献网络图示:

本文的引文网络