节点文献

用于规划快速变化无人机群的动态值迭代网络(英文)

Dynamic value iteration networks for the planning of rapidly changing UAV swarms

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李伟杨波威宋广华姜晓红

【Author】 Wei LI;Bowei YANG;Guanghua SONG;Xiaohong JIANG;School of Aeronautics and Astronautics, Zhejiang University;School of Computer Science and Technology, Zhejiang University;

【通讯作者】 杨波威;

【机构】 浙江大学航空航天学院浙江大学计算机科学与技术学院

【摘要】 在无人机自组网(UANET)中,稀疏且高速移动的无人机节点会动态改变无人机自组网的拓扑结构,这可能会导致无人机自组网服务性能问题。为规划快速变化的无人机群,本文提出一种动态值迭代网络(DVIN)模型,该模型利用无人机自组网的连接信息,采用场景式Q学习方法训练,生成状态值传播函数,使无人机节点能够自适应调节至新的物理位置。然后,评估了动态值迭代网络模型的性能,并将其与非支配排序遗传算法NSGA-Ⅱ和穷举法比较。仿真结果表明,动态值迭代网络模型显著缩短了无人机节点路径规划的决策时间,且平均成功率更高。

【Abstract】 In an unmanned aerial vehicle ad-hoc network(UANET), sparse and rapidly mobile unmanned aerial vehicles(UAVs)/nodes can dynamically change the UANET topology. This may lead to UANET service performance issues. In this study, for planning rapidly changing UAV swarms, we propose a dynamic value iteration network(DVIN) model trained using the episodic Q-learning method with the connection information of UANETs to generate a state value spread function, which enables UAVs/nodes to adapt to novel physical locations. We then evaluate the performance of the DVIN model and compare it with the non-dominated sorting genetic algorithm Ⅱ and the exhaustive method. Simulation results demonstrate that the proposed model significantly reduces the decisionmaking time for UAV/node path planning with a high average success rate.

【基金】 Project supported by the National Natural Science Foundation of China (No. 61501399);the SAIC MOTOR (No. 1925);the National Key R&D Program of China (No. 2018AAA0102302)
  • 【文献出处】 Frontiers of Information Technology & Electronic Engineering ,信息与电子工程前沿(英文) , 编辑部邮箱 ,2021年05期
  • 【分类号】V279;V249.1
  • 【被引频次】4
  • 【下载频次】154
节点文献中: 

本文链接的文献网络图示:

本文的引文网络