节点文献

深度三维重建:方法、数据和挑战(英文)

Deep 3D reconstruction:methods, data, and challenges

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘彩霞孔德慧王少帆王志勇李敬华尹宝才

【Author】 Caixia LIU;Dehui KONG;Shaofan WANG;Zhiyong WANG;Jinghua LI;Baocai YIN;Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence,Faculty of Information Technology, Beijing University of Technology;Multimedia Laboratory, School of Computer Science, University of Sydney;

【通讯作者】 王少帆;

【机构】 北京工业大学信息学部北京人工智能研究院多媒体与智能软件技术北京市重点实验室悉尼大学计算机科学学院多媒体实验室

【摘要】 三维形状重建是计算机视觉、计算机图形学、模式识别和虚拟现实等领域的重要研究课题。现有三维重建方法通常存在两个瓶颈:(1)它们涉及多个人工设计阶段,导致累积误差,且难以自动学习三维形状的语义特征;(2)它们严重依赖图像内容和质量,以及精确校准的摄像机。因此,这些方法的重建精度难以提高。基于深度学习的三维重建方法通过利用深度网络自动学习低质量图像中的三维形状语义特征,克服了这两个瓶颈。然而,这些方法具有多种体系框架,但是至今未有文献对它们作深入分析和比较。本文对基于深度学习的三维重建方法进行全面综述。首先,基于不同深度学习模型框架,将基于深度学习的三维重建方法分为4类:递归神经网络、深自编码器、生成对抗网络和卷积神经网络,并对相应方法作详细分析。其次,详细介绍上述方法常用的4个代表性数据库。再次,对基于深度学习的三维重建方法进行综合比较,包括不同方法在同一数据库、同一方法在不同数据库以及同一方法对于不同视角个数输入的结果比较。最后,讨论了基于深度学习的三维重建方法的发展趋势。

【Abstract】 Three-dimensional(3D) reconstruction of shapes is an important research topic in the fields of computer vision, computer graphics, pattern recognition, and virtual reality. Existing 3D reconstruction methods usually suffer from two bottlenecks:(1) they involve multiple manually designed states which can lead to cumulative errors,but can hardly learn semantic features of 3D shapes automatically;(2) they depend heavily on the content and quality of images, as well as precisely calibrated cameras. As a result, it is difficult to improve the reconstruction accuracy of those methods. 3D reconstruction methods based on deep learning overcome both of these bottlenecks by automatically learning semantic features of 3D shapes from low-quality images using deep networks. However, while these methods have various architectures, in-depth analysis and comparisons of them are unavailable so far. We present a comprehensive survey of 3D reconstruction methods based on deep learning. First, based on different deep learning model architectures, we divide 3D reconstruction methods based on deep learning into four types, recurrent neural network, deep autoencoder, generative adversarial network, and convolutional neural network based methods,and analyze the corresponding methodologies carefully. Second, we investigate four representative databases that are commonly used by the above methods in detail. Third, we give a comprehensive comparison of 3D reconstruction methods based on deep learning, which consists of the results of different methods with respect to the same database,the results of each method with respect to different databases, and the robustness of each method with respect to the number of views. Finally, we discuss future development of 3D reconstruction methods based on deep learning.

【基金】 Project supported by the National Natural Science Foundation of China (Nos. 61772049, 61632006, 61876012, U19B2039, and 61906011);the Beijing Natural Science Foundation of China(No. 4202003)
  • 【文献出处】 Frontiers of Information Technology & Electronic Engineering ,信息与电子工程前沿(英文) , 编辑部邮箱 ,2021年05期
  • 【分类号】TP391.41
  • 【被引频次】1
  • 【下载频次】213
节点文献中: 

本文链接的文献网络图示:

本文的引文网络