节点文献

机器学习在材料研发中的应用

Machine Learning for Materials Research and Development

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 谢建新宿彦京薛德祯姜雪付华栋黄海友

【Author】 XIE Jianxin;SU Yanjing;XUE Dezhen;JIANG Xue;FU Huadong;HUANG Haiyou;Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing;State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University;

【通讯作者】 谢建新;宿彦京;

【机构】 北京科技大学新材料技术研究院北京材料基因工程高精尖创新中心西安交通大学金属材料强度国家重点实验室

【摘要】 大数据和人工智能技术的快速发展推动数据驱动的材料研发快速发展成为变革传统试错法的新模式,即所谓的材料研发第四范式。新模式将大幅度提升材料研发效率和工程化应用水平,推动新材料快速发展。本文聚焦机器学习辅助材料研发这一新兴领域,以材料预测和优化设计为主线,在简述材料特征构建与筛选的基础上,综述了机器学习在材料相结构、显微组织、成分-工艺-性能、服役行为预测等方面的研究进展;针对材料数据样本量少、噪音高、质量差,以及新材料探索空间巨大的特点,综述了机器学习模型与优化算法和策略融合,在新材料优化设计中的研究进展和典型应用。最后,讨论了机器学习在材料领域的发展机遇和挑战,展望了发展前景。

【Abstract】 The rapid advancement of big data and artificial intelligence has resulted in new datadriven materials research and development(R&D), which has achieved substantial progress. This fourth paradigm is believed to improve materials design efficiency and industrialized application and stimulate the discovery of new materials. The focus of this work is on the emerging field of machine learning-assisted material R&D, with an emphasis on machine learning predictions and optimization design. Following a brief description of feature construction and selection, recent developments in material predictions on phases/structures, processing-structure-property relationships, microstructure, and material performance are reviewed. This paper also summarizes the research progress on optimization algorithms with machine learning models, which is expected to overcome the bottlenecks such as the small size and high noise level of material data samples and huge space for exploration. The challenges and future opportunities for machine learning applications in materials R&D are discussed and prospected.

  • 【文献出处】 金属学报 ,Acta Metallurgica Sinica , 编辑部邮箱 ,2021年11期
  • 【分类号】TP181;TB30
  • 【被引频次】19
  • 【下载频次】4869
节点文献中: 

本文链接的文献网络图示:

本文的引文网络