节点文献
多模块融合的浮游生物检测器
Multi module fusion plankton detector
【摘要】 针对传统海洋浮游生物利用人工提取特征的传统检测方法,存在检测精度低、检测过程冗余等问题,基于深度学习技术,提出了多模块融合的浮游生物检测器(multi module fusion single shot detector, MMFSSD).首先,提出了特征信息增强模块,在不增加网络复杂性的前提下增加了网络的感受野,将下采样图像注入该模块中,以增强特征图的低级特征信息.在此基础上,进一步提出了选择性特征融合模块,在网络中学习融合时的权重,选择性地融合不同尺度的特征.有效性验证试验结果表明,在数据集PASCAL VOC和MS COCO中的平均精度均值分别为80.70%和32.20%,在浮游生物数据集PMID2019中的平均精度均值达到90.41%.
【Abstract】 To solve the problems of detection process with low detection accuracy and redundancy in the traditional detection method of Marine plankton by artificial features extraction, a multi module fusion single shot detector(MMFSSD) was proposed based on deep learning technology. The feature information enhancement module was proposed to add the receptive field of network without increasing the network complexity, and the down-sampled image was infused into the module to enhance the low-level feature information of feature graph. The selective feature fusion module was further proposed to learn the weight of fusion in the network and selectively fuse features of different scales. The results of verification test show that the mean average precision values are 80.70% and 32.20% on PASCAL VOC and MS COCO test-set, respectively. The mean average precision on PMID2019 data-set reaches 90.41%.
【Key words】 detector; plankton; deep learning; receptive field; low-level feature information;
- 【文献出处】 江苏大学学报(自然科学版) ,Journal of Jiangsu University(Natural Science Edition) , 编辑部邮箱 ,2021年06期
- 【分类号】Q178;TP391.41
- 【下载频次】67