节点文献

基于注意力机制的深度学习推荐研究进展

Research advances on deep learning recommendation based on attention mechanism

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈海涵吴国栋李景霞王静雅陶鸿

【Author】 CHEN Hai-han;WU Guo-dong;LI Jing-xia;WANG Jing-ya;TAO Hong;School of Information & Computer,Anhui Agricultural University;

【通讯作者】 吴国栋;

【机构】 安徽农业大学信息与计算机学院

【摘要】 近年来,注意力机制AM被广泛应用到基于深度学习的自然语言处理任务中,基于注意力机制的深度学习推荐也成为推荐系统研究的一个新方向。探讨了注意力机制的结构和分类标准,从基于注意力机制的DNN推荐、CNN推荐、RNN推荐、GNN推荐4个方面分析了现有融合注意力机制的深度学习推荐研究的主要进展和不足,阐明了其中的主要难点,最后指出了多特征交互的注意力机制推荐、多模态注意力机制深度学习推荐、融入注意力机制的多种深度神经网络混合推荐和注意力机制的群组推荐等基于注意力机制的深度学习推荐未来的主要研究方向。

【Abstract】 In recent years, Attention Mechanism(AM) has been widely used in natural language processing tasks based on deep learning. Deep learning recommendation based on attention mechanism has become a new direction in the research of recommendation system. This paper discusses the structure and classification standard of attention mechanism, and analyzes the main progress and shortcomings of the existing deep learning recommendation researches based on attention mechanism from four aspects: DNN recommendation, CNN recommendation, RNN recommendation and GNN recommendation. The main difficulties in the research are illustrated. Finally, the paper points out the future direction of deep learning recommendation including multi-feature interaction attention mechanism recommendation, multi-modal attention mechanism recommendation, hybrid recommendation for multiple deep neural networks based on attention mechanism, and group recommendation based on attention mechanism.

【基金】 国家自然科学基金(31671589);安徽省重点研发计划(201904a06020056);智慧农业技术与装备安徽省重点实验室开放基金(APKLSATE2019X003)
  • 【文献出处】 计算机工程与科学 ,Computer Engineering & Science , 编辑部邮箱 ,2021年02期
  • 【分类号】TP391.3;TP18
  • 【被引频次】34
  • 【下载频次】1411
节点文献中: 

本文链接的文献网络图示:

本文的引文网络