节点文献

基于FSDPC_Otsu算法的滚动轴承故障研究

Rolling Bearing Fault Diagnosis Based on Clustering by Fast Search and Find of Density Peaks Combined Otsu Method

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 邢婷婷关阳孙登云孟宗樊凤杰

【Author】 XING Ting-ting;GUAN Yang;SUN Deng-yun;MENG Zong;FAN Feng-jie;Key Laboratory of Measurement Technology and Instrumentation of Hebei Province,Yanshan University;Tangshan Polytechnic College;

【通讯作者】 孟宗;

【机构】 燕山大学河北省测试计量技术及仪器重点实验室唐山工业职业技术学院

【摘要】 针对振动源数未知且观测信号小于振动源数量的欠定盲源问题,提出一种改进快速寻找密度峰值聚类(FSDPC)的方法。首先将混合信号投影到多维空间上并计算每点的密度值,在此基础上利用最大类间方差法(Otsu)对点密度进行阈值分割,去除干扰点对聚类准确率的影响;然后根据数据的密度峰值确定聚类中心,估计混合矩阵;最后通过L1范数最小化对混合信号进行分离并进行包络谱分析,实现轴承故障诊断。FSDPCOtsu方法可在源数和聚类中心初值未知的条件下估计混合矩阵,且保证混合矩阵精度。实验结果表明,应用FSDPCOtsu方法的稀疏成分分析能够对轴承多故障信号进行欠定盲分离,进而实现故障识别与诊断。

【Abstract】 To solve the problem of underdetermined blind separation,caused by unknown vibration sources and smaller number of observation signals,an improved method of clustering by fast search and find of density peaks( FSDPC)is proposed. Initially,the mixed signal is projected to the multi-dimensional space and then calculate each point density value,using the Otsu method following for density threshold segmentation so as to remove the influence of interference on the accuracy of clustering,and then determine the cluster center according to the data density peaks,to estimate the mixing matrix; finally utilizing L1 norm minimization to separate mixed signals,and the envelope spectrum analysis is carried to realize fault diagnosis. The FSDPC_Otsu method can estimate the mixed matrix under the condition of the unknown source number and the initial value of the cluster center,at the same time,the accuracy of the mixed matrix can be guaranteed.The experimental results show that the sparse component analysis of the FSDPC_Otsu can separate the multiple fault signals of the bearing and realize the fault diagnosis.

【基金】 国家自然科学基金(52075470);河北省自然科学基金(E2019203448);中央引导地方科技发展基金(206Z4301G);河北省“三三三人才工程”(A202102001)
  • 【文献出处】 计量学报 ,Acta Metrologica Sinica , 编辑部邮箱 ,2021年11期
  • 【分类号】TH133.33
  • 【被引频次】3
  • 【下载频次】116
节点文献中: 

本文链接的文献网络图示:

本文的引文网络