节点文献
电主轴刀柄黏屑检测夹头应力与变形研究
Research on Stress and Deformation of the Chip-in-Spindle Detection Collet
【摘要】 高速电主轴数控机床在上刀过程中发生的电主轴黏屑现象导致刀具位置不正,进而造成同心度误差,严重影响加工精度,现有的后处理检测方法,不仅影响加工效率而且造成加工资源的浪费。为解决上述问题,利用有限元分析软件ANSYS Workbench对电主轴黏屑检测夹头进行应力、变形分析,模拟电主轴夹头的黏屑检测。通过模拟正常工况与黏屑工况下夹头外感受面的受载情况,分析黏屑处应力、变形和黏屑位置。研究结果可为电主轴黏屑检测夹头的结构优化设计和黏屑检测方案的设计提供参考。
【Abstract】 The tool position is incorrect due to the jammed chips phenomenon of the high-speed motorized spindle during the process of machine tool loading, which leads to the concentricity error and seriously affects the machining accuracy. The current post-processing detection methods not only affect the processing efficiency, but also cause the waste of processing resources. In order to solve the above problems, the finite element analysis software ANSYS Workbench was used to analyze the stress and deformation of the chip-in-spindle detection collet to simulate the jammed chips detection. By simulating the load on the external sensory surface of the collet under clean and jammed chips conditions, the strain, deformation and the jammed chips position were analyzed. The research results can provide reference for the structural optimization design of the chip-in-spindle detection collet and the design of the jammed chips detection scheme.
【Key words】 High-speed motorized spindlel CNC machine tools; Jammed chips phenomenon; Collet; ANSYS Workbench;
- 【文献出处】 机床与液压 ,Machine Tool & Hydraulics , 编辑部邮箱 ,2021年23期
- 【分类号】TG659
- 【下载频次】107