节点文献

天目山地区重污染天气预测模型及其环流特征研究

Heavy Pollution Weather Prediction Model and Circulation Characteristics in Tianmu Mountains Region

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李云张莹许金萍蒋晓梅杨聃梁明珠

【Author】 Li Yun;Zhang Ying;Xu Jinping;Jiang Xiaomei;Yang Dan;Liang Mingzhu;Anji County Weather Station;Huzhou Meteorological Office;

【机构】 浙江省安吉县气象局浙江省湖州市气象局

【摘要】 建立基于LIBSVM方法的重污染天气PM2.5、PM10预测模型及参数寻优,得到重污染天气时PM2.5、PM10对应的最优环流形势场并分析重污染天气环流特征。(1)根据与PM2.5的相关系数的绝对值及显著性,在训练值占比69%,相关性与显著性最好的27个要素参与时得到了重污染天气下PM2.5日数据最优预测模型,训练值和测试值的R2分别达到了0.9992和0.7196;(2)由相关性与显著性最好的24个要素参与,得到了重污染天气下PM10日数据最优预测模型,训练值和测试值的R2分别达到了0.9978和0.7792;(3)PM2.5最优预测模型对应的最优5类700 hPa合成环流形势中第4、5类和PM10模型对应的最优6类700 hPa合成环流形势中第1、3、4类均属于高压脊控制(影响)型,容易出现长时间持续污染,是天目山地区影响PM2.5和PM10污染的最主要天气类型。

【Abstract】 The LIBSVM-based prediction model and parameter optimization of PM2.5 and PM10 in heavy pollution weather are established. The optimal circulation fields corresponding to PM2.5 and PM10 in heavy pollution weather are obtained and the circulation characteristics of heavy pollution weather are analyzed. The results show that:(1)according to the absolute value significance of correlation coefficient with PM2.5, the optimal prediction model of PM2.5 data in heavy pollution weather is obtained when the training value accounts for 69% and the 27 elements with the best correlation and significance are involved, and the R2 of training value and test value reaches 0.9992 and 0.7196 respectively.(2)Having the participation of 24 elements with the best correlation and significance, the optimal prediction model of PM10 daily data in heavy pollution weather is achieved, and the R2 of training value and test value are 0.9978 and 0.7792, respectively.(3)PM2.5 optimal prediction model corresponds to the optimal five types of 700 hPa synthetic circulation situation.Its fourth and fifth category circulations and the first, third and fourth category circulations in the optimal six types of circulations accompanying PM10 all belong to the high-pressure ridge control(impact) type and are prone to long-term continuous pollution, which is the main weather type affecting PM2.5 and PM10 in the Tianmu Mountains region.

【基金】 湖州市科技局公益性研究计划项目(2018GZ32)
  • 【文献出处】 气象与环境科学 ,Meteorological and Environmental Sciences , 编辑部邮箱 ,2021年03期
  • 【分类号】X51;P434
  • 【被引频次】2
  • 【下载频次】106
节点文献中: 

本文链接的文献网络图示:

本文的引文网络