节点文献

基于神经网络的SiC功率管导通电阻估测技术研究

Research on On-State Resistance Estimation of SiC Power Transistor Based on Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 崔江陈一凡范士颖林华沈勇王友仁陈则王

【Author】 Cui Jiang;Chen Yifan;Fan Shiying;Lin Hua;Shen Yong;Wang Youren;Chen Zewang;Nanjing University of Aeronautics and Astronautics;Aeronautical Science and Technology Key Laboratory of Fault Diagnosis and Health Management Technology,AVIC Shanghai Aero Measurement Controlling Research Institute;

【机构】 南京航空航天大学航空工业上海航空测控技术研究所故障诊断与健康管理技术航空科技重点实验室

【摘要】 SiC功率管器件广泛应用在航空领域的电能变换、配电等场合,其健康状况十分重要。在SiC器件的健康监测应用中,导通电阻的检测是一项十分重要的技术。为了能够简单准确地得到碳化硅(SiC)MOSFET功率器件的导通电阻,本文提出了一种基于神经网络的SiC MOSFET器件导通电阻估测方法。本文搭建SiC MOSFET导通电阻测试电路仿真和物理试验平台,并使用BP神经网络(BP neural networks, BPNN)对不同温度、不同栅极电压以及不同漏极电流下SiC MOSFET器件的导通电阻数据进行详细描述。最后,对基于BPNN的SiC MOSFET导通电阻估测方法进行效果验证。结果表明,该方法具有精度高和泛化能力强的优点,能够实现SiC MOSFET器件导通电阻的有效估测。

【Abstract】 SiC power devices are applied widely in the applications of aeronautics, mainly in terms of electrical energy transform and distribution. The health surveillance technology has been a focus in the past time for these devices,whose on-state resistance detection technology is crucial. In order to obtain on-state resistance of silicon carbide(SiC) MOSFET power devices simply and accurately, this paper proposes a neural network based on-state resistance estimation method for SiC MOSFET devices. This paper builds a simulation and physical experiment platform for SiC MOSFET on-resistance test circuit, and uses BP neural network to describe in detail on-stateresistance data of SiC MOSFET devices under different temperatures, different gate voltages and different drain currents. Finally, the effect of SiC MOSFET on-state resistance estimation method based on BP neural network is verified. The results show that this method has the advantages of high accuracy and strong generalization ability, and can realize effective estimation of on-state resistance of SiC MOSFET devices.

【基金】 航空科学基金(201933052001,20183352030);中央高校基本科研业务费专项资金资助项目(NS2021021)~~
  • 【文献出处】 航空科学技术 ,Aeronautical Science & Technology , 编辑部邮箱 ,2021年09期
  • 【分类号】TN386;TP183
  • 【被引频次】1
  • 【下载频次】164
节点文献中: 

本文链接的文献网络图示:

本文的引文网络