节点文献

基于深度学习的船舶舷号检测与识别

Detection and Identification of Ship’s Hull Number Based on Deep Learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 路云胡杰

【Author】 LU Yun;HU Jie;School of Computer Science, Yangtze University;

【通讯作者】 胡杰;

【机构】 长江大学计算机科学学院

【摘要】 陆地交通和水上交通是我国交通运输必不可少的两部分,而水上交通以船运为主。类似汽车车牌号,正规的船舶一般在两舷水线以上标明舷号以方便身份识别,但由于舷号命名和印刷的非标准性,其计算机的图像识别尚未进入实用阶段。本文基于EAST的场景文本检测算法以及基于CRNN的端到端不定长文字识别算法,提出一种分阶段识别船舶舷号的解决方案。实验结果表明,该方案能较有效地对船舶舷号进行检测与识别,识别的准确率为73.06%。

【Abstract】 Land transportation and water transportation are two essential parts of China’s transportation, and water transportation is mainly based on shipping. Similar to car license plate numbers, regular ships generally have hull numbers above the waterline on both sides to facilitate identification. However, due to the non-standard naming and printing of hull numbers, computer image recognition has not yet entered the practical stage. Based on EAST’s scene text detection algorithm and CRNN-based end-to-end variable length text recognition algorithm, this paper proposes a solution to identify hull number in stages. Experimental results show that this scheme can detect and identify ship’s hull number more effectively, and the accuracy of identification is 73.06%.

  • 【文献出处】 电脑知识与技术 ,Computer Knowledge and Technology , 编辑部邮箱 ,2021年11期
  • 【分类号】TP18;TP391.41;U675.79
  • 【被引频次】2
  • 【下载频次】179
节点文献中: 

本文链接的文献网络图示:

本文的引文网络