节点文献

应用高斯聚类的单木分割及树高和冠幅的提取

Single Tree Segmentation and Extraction of Tree Height and Crown Width Using Gaussian Clustering

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张怡卓吕阿康蒋大鹏陈金浩王克奇

【Author】 Zhang Yizhuo;Lü Akang;Jiang Dapeng;Chen Jinhao;Wang Keqi;Northeast Forestry University;

【通讯作者】 王克奇;

【机构】 东北林业大学

【摘要】 针对机载激光雷达点云中基于栅格化的冠层高度模型(CHM)所导致的原始点云数据丢失问题,提出了一种应用高斯模型聚类的单木信息提取方法。采用形态学开运算和高斯平滑方法形成高斯冠层最大模型(GCMM)能减少无关局部最大值对单木分割的影响,利用局部最大值法初步探测树冠顶点,通过最速下降法建立混合高斯模型得到树木位置和冠幅。利用聚类分析划分临近点云归属,进而实现单木参数准确提取,并提取单木最高点为树高。将点云分割方法应用于美国蓝岭地区6块圆形针叶林样地(r=30 m)。结果表明:单木分割F为0.89,正确分割单木树高提取精度95%,冠幅提取精度91%。结合实测数据对提取到的树高和冠幅进行相关性分析,树高R~2=0.92,平均误差为-0.83 m;冠幅R~2=0.84,平均误差为-0.42 m。相比于分水岭算法,高斯模型聚类方法F提高了11.2%,正确分割单木树高及冠幅提取精度提高了5.5%、5.8%,树高R~2提高0.08,平均误差减少0.58 m;冠幅R~2提高0.11,平均误差减少0.63 m。

【Abstract】 Aiming at the problem of the original point cloud data loss caused by the rasterized canopy height model(CHM) in the airborne LIDAR point cloud, a single tree information extraction method with Gaussian model clustering was proposed. The use of morphological opening operation and Gaussian smoothing method to form Gaussian canopy maximum model(GCMM) can reduce the influence of irrelevant local maximum on single tree segmentation. The local maximum method is used to initially detect the crown apex, and the mixed Gaussian model is established by the steepest descent method for tree location and crown width. Cluster analysis is used to divide the attribution of adjacent point clouds, so as to achieve accurate extraction of single tree parameters, and extract the highest point of single tree as tree height.The point cloud segmentation method was applied to six circular coniferous forest plots(r=30 m) in the Blue Ridge region of the United States. The single tree segmentation F was 0.89, the correct extraction of single tree segmentation had a high extraction accuracy of 95%, and the extraction accuracyof the crown width is 91%. The correlation between the extracted tree height and crown width is analyzed with the measured data. The tree height R~2 is 0.92, and the average error is-0.83 m; the crown width R~2 is 0.84, and the average error is-0.42 m. For the watershed algorithm, the Gaussian model clustering method F is increased by 11.2%, the accuracy of the correct segmentation of single-tree trees and the extraction of crown width are increased by 5.5% and 5.8%, the tree height R~2 is increased by 0.08, and the average error is reduced by 0.58 m. The crown width R~2 is increased by 0.11, and the average error is reduced by 0.63 m.

【基金】 林业公益性行业科研专项(201504307)
  • 【文献出处】 东北林业大学学报 ,Journal of Northeast Forestry University , 编辑部邮箱 ,2021年02期
  • 【分类号】S758
  • 【被引频次】9
  • 【下载频次】562
节点文献中: 

本文链接的文献网络图示:

本文的引文网络