节点文献

融合多层级特征的弱监督钢板表面缺陷检测算法

Weakly-Supervised Steel Plate Surface Defect Detection Algorithm by Integrating Multiple Level Features

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 何彧宋克臣张德富颜云辉

【Author】 HE Yu;SONG Ke-chen;ZHANG De-fu;YAN Yun-hui;School of Mechanical Engineering & Automation, Northeastern University;

【通讯作者】 颜云辉;

【机构】 东北大学机械工程与自动化学院

【摘要】 由于缺少实例级标签,使得深度神经网络在工业表面检测领域的应用受到了限制.为解决这一问题,本文面向实际的热轧钢板表面缺陷检测任务,提出基于弱监督学习的缺陷检测网络,该网络引入类激活映射模型,使用容易获取的图像级标签进行模型训练,进行钢板表面的缺陷检测.为了进一步提升检测精度和克服类激活映射模型原有的缺点,本文采用性能更优的残差网络作为主干网络进行特征提取,并提出了多层级特征融合网络进行类激活图的生成,来获取更多的细节信息和更准确的目标激活区域.通过在公开缺陷数据集NEU-CLS上进行实验,结果表明本文提出的方法能够在标签不完备的情况下进行缺陷检测任务,并取得0.68%分类错误率和17.75%定位错误率,胜过其他同类的方法.

【Abstract】 Due to the lack of instance-level annotations,the application of deep neural network in the field of industrial surface detection is limited. In order to solve this problem,a weaklysupervised-learning-based defect detection network is proposed for the practical defect detection task of hot rolled steel plate surfaces. This network introduces the class activation mapping model,which can be used to train the model with the image-level annotations that can be obtained relatively easily,and performs the defect detection on the surface of steel plates. In order to further improve the detection accuracy and overcome the shortcomings of the class activation mapping model,the residual network with better performances is used as the backbone network for feature extraction,and the multi-level feature integration network is proposed to generate the class activation maps. In this way,the network can obtain more detail information and activate target areas more accurately. Extensive experiments have been carried out on the NEU-CLS dataset,and the results show that the proposed method can detect defects with incomplete labels,and obtain the classification error rate of 0. 68% and the localization error rate of 17. 75%,which are better than the other related methods.

【基金】 国家重点研发计划项目(2017YFB0304200);国家自然科学基金资助项目(51805078);中央高校基本科研业务费专项资金资助项目(N2003021)
  • 【文献出处】 东北大学学报(自然科学版) ,Journal of Northeastern University(Natural Science) , 编辑部邮箱 ,2021年05期
  • 【分类号】TP391.41;TG115.28
  • 【被引频次】8
  • 【下载频次】489
节点文献中: 

本文链接的文献网络图示:

本文的引文网络