节点文献

MIL-53(Al)衍生的Rh单原子催化剂在间氯硝基苯选择性加氢制间氯苯胺反应中的应用(英文)

MIL-53(Al) derived single-atom Rh catalyst for the selective hydrogenation of m-chloronitrobenzene into m-chloroaniline

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王伟银林露齐海峰曹文秀李志陈少华邹晓轩陈铁红唐南方宋卫余王爱琴罗文豪

【Author】 Weiyin Wang;Lu Lin;Haifeng Qi;Wenxiu Cao;Zhi Li;Shaohua Chen;Xiaoxuan Zou;Tiehong Chen;Nanfang Tang;Weiyu Song;Aiqin Wang;Wenhao Luo;College of Chemistry, Xiangtan University;CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Chemistry and Chemical Engineering, Jishou University;State Key Laboratory of Heavy Oil Processing, China University of Petroleum;Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University;State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences;

【通讯作者】 邹晓轩;罗文豪;

【机构】 湘潭大学化学学院中国科学院大连化学物理研究所,中国科学院航天催化材料重点实验室中国科学院大学吉首大学化学与化工学院中国石油大学重质油加工国家重点实验室南开大学材料科学与工程学院高级能源材料重点实验室,新催化材料科学研究所中国科学院大连化学物理研究所,催化基础国家重点实验室

【摘要】 卤代苯胺是化学工业中重要的中间体,主要用于制造药物、聚合物、染料等含氮化学品,用多相金属催化剂催化卤代硝基芳烃加氢制备卤代苯胺是一种高效,绿色和可持续发展的生产工艺.该过程需要选择性加氢硝基基团,同时避免卤素基团的脱卤副反应发生.然而,化学选择性加氢存在巨大的挑战,难点在于催化剂的精准设计,一方面要求具备对硝基基团合适的加氢能力,另一方面要阻止对卤素基团的脱卤副反应发生.基于此,研制高效多相金属催化剂用于卤代硝基芳烃选择性加氢制备卤代苯胺反应引起了高度关注.近年来,单原子金属催化剂受到越来越多的关注,并在卤代硝基芳烃选择性加氢制备卤代苯胺反应中显现出极大的潜力.本文通过在金属有机骨架材料MIL-53 (Al)自组装的过程中将金属Rh原位嫁接其骨架结构中,继而通过限域热解的方法制备了Rh@Al2O3@C单原子催化剂,其在间氯硝基苯(m-CNB)加氢制间氯苯胺(m-CAN)反应中显现了高效催化选择性.球差校正高角度环形暗场模式的透射电镜,CO作为探针分子的红外光谱和X射线光电子能谱等结果发现,Rh是以单原子的形式均匀的分布在Al2O3上并被无定型碳包覆,且Rh化学价态呈正价.而27 Al固体核磁共振与密度泛函理论计算的结果则进一步确定Al2O3@C载体中存在的五配位的Al物种(Al)是锚定Rh单原子的主要位点,Alv的不饱和的配位结构可以有效地稳定Rh单原子,对形成Rh位点的单原子分散至关重要.在间氯硝基苯选择性加氢制间氯苯胺反应中,与等体积浸渍法制备的Rh/C和Rh/γ-Al2O3纳米催化剂相比,Rh@Al2O3@C单原子催化剂表现出优异催化性能:其在313 K,氢气压力为20 bar的温和条件下转换频率(TOF)高达23 17 molm-CNB·molRh-1·h-1,优于已报道的多相金属催化剂,是目前的最高值.此外,该催化剂展现出极佳的稳定性能,经过五次循环后,该催化剂对m-CAN的选择性仍旧保持在98%左右.Rh@Al2O3@C单原子催化剂的优异催化性能源自于金属单原子结构的形成对于金属位点电子结构的有效调节,进而调控催化剂加氢性能并实现对加氢脱卤副反应的抑制;与此同时,Rh@Al2O3@C催化剂增进了酸位点的可及性,从而促进了其串联步骤中包含的脱水反应的发生,进而有效提高催化剂的反应活性.

【Abstract】 The catalytic hydrogenation of halonitroarenes to haloanilines is a green and sustainable process for the production of key nitrogen-containing intermediates in fine chemical industry.Chemoselective hydrogenation poses a significant challenge,which requires the rational design of the catalysts with proper hydrogenation ability for nitro group and simultaneously preventing dehalogenation of halogen group.Herein,a highly effective Rh@Al2 O3@C single-atom catalyst(SAC) was developed for the hydrogenation of m-chloronitrobenzene(m-CNB) to m-chloroaniline(m-CAN),through an in-situ grafting of metal during the assembly of MIL-53(Al),followed by confined pyrolysis.Extensive characterizations reveal an exquisite structure of the Rh@Al2 O3@C,containing atomically dispersed Rh sites onto Al2 O3 confined by the amorphous carbon.The five-coordinated aluminum(Al)species are essential for achieving the atomic dispersion of Rh atoms,providing the unsaturated coordinative sites for metal.Compared to the benchmark Rh/γ-Al2 O3 and Rh/C nanocatalysts,the Rh@Al2 O3@C SAC affords an excellent turnover frequency of 2317 molm-CNB·molRh-1·h-1,the highest value to date in heterogeneous catalyst systems for the hydrogenation of m-CNB at 313 K and 20 bar H2,together with a sustained selectivity to m-CAN(~98%) during five consecutive runs.The superior catalytic performance of the Rh@Al2 O3@C is attributed to a proper modulation of electronic structure of hydrogenation metal by forming SAC,together with an enhanced accessibility of acid function sites.

【基金】 supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100);the National Natural Science Foundation of China (21703238, 21690084, 21802134);Educational Commission of Hunan Province (19B463);Collaborative Innovation Center of Manganese-Zinc-Vanadium Industrial Technology (MXF202001);Research Startup Foundation of Jishou University (No.21)~~
  • 【文献出处】 Chinese Journal of Catalysis ,催化学报 , 编辑部邮箱 ,2021年05期
  • 【分类号】TQ246.31;TQ426
  • 【下载频次】140
节点文献中: 

本文链接的文献网络图示:

本文的引文网络