节点文献

基于深度可分离卷积网络的皮肤镜图像病灶分割方法

Dermoscopic image lesion segmentation method based on deep separable convolutional network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 崔文成张鹏霞邵虹

【Author】 CUI Wencheng;ZHANG Pengxia;SHAO Hong;School of Information Science and Engineering, Shenyang University of Technology;

【通讯作者】 崔文成;

【机构】 沈阳工业大学信息科学与工程学院

【摘要】 针对皮肤镜图像病灶难定位、病灶精准分割难以实现的问题,提出一种基于深度可分离卷积网络的皮肤镜图像病灶分割方法。首先对皮肤镜图像进行黑框移除和毛发移除处理,将图像中有碍确定病灶位置的人工噪声、天然噪声移除;然后在降噪处理的基础上,对图像进行形变、旋转,以扩充数据集;最后构建基于深度可分离卷积、空洞卷积的编解码分割模型,编码部分对图像进行特征提取,解码部分融合特征图,并对图像细节特征进行恢复。实验结果表明,该方法针对皮肤镜图像病灶分割问题可取得较好的分割效果,分割病灶的准确率达到95.24%,与分割模型U-Net相比,准确度提高了6.17%。

【Abstract】 Aiming at the problem of the difficulty in locating the lesions in dermoscopic images and achieving precise segmentation of the lesions, a method of lesion segmentation in dermatological images based on deep separable convolutional network was proposed. Firstly, perform the black frame removal and hair removal processing on the dermoscopic image to remove the artificial and natural noise that hinders the location of the lesion in the image. Then the image after the noise reduction process was deformed and rotated to expand the data set. Finally, a encoder-decoder segmentation model based on depth separable convolution and hole convolution was constructed. The coding part extracts the features of the image, and the decoding part fuses the feature maps and restores the image details. Experimental results show that this method can achieve better segmentation results for the problem of skin disease image lesion segmentation. The accuracy of segmenting lesions reaches 95.24%. Compared with the segmentation model U-Net, the accuracy is improved by 6.17%.

  • 【文献出处】 智能科学与技术学报 ,Chinese Journal of Intelligent Science and Technology , 编辑部邮箱 ,2020年04期
  • 【分类号】R751;TP391.41;TP183
  • 【被引频次】1
  • 【下载频次】122
节点文献中: 

本文链接的文献网络图示:

本文的引文网络