节点文献

基于专利交易数据的高校技术创新团队识别和跟踪方法研究——以浙江大学为例

A Research on the Identification and Tracking Method of Technology Innovation Teams in Universities Based on Patent Transaction Data——A Case Study on Zhejiang University

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵显基张云袁顺波周勇

【Author】 Zhao Xianji;Zhang Yun;Yuan Shunbo;Zhou Yong;College of Business, Jiaxing University;School of Information Management, Nanjing University;

【机构】 嘉兴学院商学院南京大学信息管理学院

【摘要】 技术创新团队的发现、培育工作,对于促进高校产学研联系具有重要的战略意义。利用IncoPat中高校专利交易数据,通过共现网络、聚类、战略坐标图识别技术创新团队,依据历时网络的关联、变化进行演变分析,结合发明人的科学研究背景信息获悉其科学技术关联,并以浙江大学为例,进行了实例研究。结果表明,自然语言处理技术与可视化知识图谱相结合的方法,能促进技术创新团队识别、跟踪工作的深入开展,并能提高中文专利数据的分析深度。

【Abstract】 The discovery and cultivation of technology innovation teams has great strategic significance for promoting the industry-university-research connections in colleges and universities. In this paper, the co-occurrence network, clustering and strategic coordinate diagrams are used to identify the technology innovation teams based on the patent transaction data of universities from IncoPat. Then through the combination of the evolution analysis based on the association and changes of the networks over time and the scientific research background information of the inventors, their scientific and technological correlations are obtained. Last, a case study on Zhejiang University is carried out. The results show that the method that combines the natural language processing techniques and visual knowledge map tools can greatly promote the identification and tracking of technology innovation teams and improve the in-depth analysis of the patent data in Chinese.

【基金】 2019年浙江省大学生科技创新活动计划暨新苗人才计划项目(2019R417002)
  • 【文献出处】 嘉兴学院学报 ,Journal of Jiaxing University , 编辑部邮箱 ,2020年03期
  • 【分类号】G649.2;G306
  • 【下载频次】238
节点文献中: 

本文链接的文献网络图示:

本文的引文网络