节点文献

Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti–Cu–Zr–Ni alloys

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈福川代富平杨霄熠阮莹魏炳波

【Author】 Fu-Chuan Chen;Fu-Ping Dai;Xiao-Yi Yang;Ying Ruan;Bing-Bo Wei;Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education,Northwestern Polytechnical University;

【通讯作者】 代富平;

【机构】 Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education,Northwestern Polytechnical University

【摘要】 Amorphous Ti–Cu–Zr–Ni alloys with minor addition of Sn and Al were prepared by melt spinning technique.The effects of Sn and Al additions on the microstructures and mechanical properties of glassy ribbons were investigated.The amorphous state of ribbons was confirmed by x-ray diffraction and transmission electron microscopy,where those ribbons with Sn addition exhibited a fully amorphous state.The characteristic temperature indicates that Ti45Cu35Zr10Ni5Sn5 alloy has a stronger glass-forming ability,as proven by differential scanning calorimetry.Ti45Cu35Zr10Ni5Al5 alloy showed a better hardness of 9.23 GPa and elastic modulus of 127.15 GPa and good wear resistance.Ti45Cu35Zr10Ni5Sn5 alloy displayed a pop-in event related to discrete plasticity according to nanoindentation.When the temperature is below 560 K,Ti45Cu35Zr10Ni5Sn5 alloy mainly exhibits elasticity.When the temperature rises between 717 K and 743 K,it shows a significant increase in elasticity but decrease in viscoelasticity after the ribbon experiences the main relaxation at 717 K.When the temperature is above 743 K,the ribbon shows viscoplasticity.

【Abstract】 Amorphous Ti–Cu–Zr–Ni alloys with minor addition of Sn and Al were prepared by melt spinning technique.The effects of Sn and Al additions on the microstructures and mechanical properties of glassy ribbons were investigated.The amorphous state of ribbons was confirmed by x-ray diffraction and transmission electron microscopy,where those ribbons with Sn addition exhibited a fully amorphous state.The characteristic temperature indicates that Ti45Cu35Zr10Ni5Sn5 alloy has a stronger glass-forming ability,as proven by differential scanning calorimetry.Ti45Cu35Zr10Ni5Al5 alloy showed a better hardness of 9.23 GPa and elastic modulus of 127.15 GPa and good wear resistance.Ti45Cu35Zr10Ni5Sn5 alloy displayed a pop-in event related to discrete plasticity according to nanoindentation.When the temperature is below 560 K,Ti45Cu35Zr10Ni5Sn5 alloy mainly exhibits elasticity.When the temperature rises between 717 K and 743 K,it shows a significant increase in elasticity but decrease in viscoelasticity after the ribbon experiences the main relaxation at 717 K.When the temperature is above 743 K,the ribbon shows viscoplasticity.

【基金】 Project supported by the National Natural Science Foundation of China (Grant Nos. 51671161,U1806219,U1660108,and 51327901);the Research Project of the Natural Science Foundation of Shanxi Province,China (Grant Nos. 2017JM5116 and 2020JZ-08)
  • 【文献出处】 Chinese Physics B ,中国物理B , 编辑部邮箱 ,2020年06期
  • 【分类号】TG146.23
  • 【被引频次】1
  • 【下载频次】45
节点文献中: 

本文链接的文献网络图示:

本文的引文网络