节点文献
First-principles calculations of solute–vacancy interactions in aluminum
【摘要】 The interactions of solute atoms with vacancies play a key role in diffusion and precipitation of alloying elements,ultimately influencing the mechanical properties of aluminum alloys. In this study, first-principles calculations are systematically performed to quantify the solute–vacancy interactions for the 3 d–4 p series and the 4 d–5 p series. The solute–vacancy interaction gradually transforms from repulsion to attraction from left to right. The solute–vacancy binding energy is sensitive to the supercell size for elements at the beginning. These behaviors of the solute–vacancy binding energy can be understood in terms of the combination and competition between the elastic and electronic interactions. Overall, the electronic binding energy follows a similar trend to the total binding energy and plays a major role in the solute–vacancy interactions.
【Abstract】 The interactions of solute atoms with vacancies play a key role in diffusion and precipitation of alloying elements,ultimately influencing the mechanical properties of aluminum alloys. In this study, first-principles calculations are systematically performed to quantify the solute–vacancy interactions for the 3 d–4 p series and the 4 d–5 p series. The solute–vacancy interaction gradually transforms from repulsion to attraction from left to right. The solute–vacancy binding energy is sensitive to the supercell size for elements at the beginning. These behaviors of the solute–vacancy binding energy can be understood in terms of the combination and competition between the elastic and electronic interactions. Overall, the electronic binding energy follows a similar trend to the total binding energy and plays a major role in the solute–vacancy interactions.
【Key words】 first-principles calculations; solute–vacancy binding; aluminum alloys;
- 【文献出处】 Chinese Physics B ,中国物理B , 编辑部邮箱 ,2020年06期
- 【分类号】TG146.21
- 【下载频次】27