节点文献
刚性脉冲微分方程Runge-Kutta方法的稳定性和收敛性
Stability and Convergence of Runge-Kutta Methods for Stiff Impulsive Differential Equations
【摘要】 将Runge-Kutta方法用于求解刚性脉冲微分方程,获得了(k,l)-代数稳定的Runge-Kutta方法稳定及渐近稳定的条件.同时证明了求解刚性常微分方程r阶B-收敛的Runge-Kutta方法用于求解刚性脉冲微分方程也是r阶B-收敛的.
【Abstract】 Runge-Kutta methods are adapted for solving stiff impulsive differential equations. The numerical stability and asymptotic stability conditions of(k,l)-algebraically stable Runge-Kutta methods are derived. Meanwhile,it is proved that if a Runge-Kutta method for solving stiff ordinary differential equations is B-convergent of order r, then it is also B-convergent of order r for solving stiff impulsive differential equations.
【关键词】 刚性脉冲微分方程;
Runge-Kutta方法;
稳定性;
渐近稳定性;
收敛性;
【Key words】 stiff impulsive differential equations; Runge-Kutta methods; stability; asymptotic stability; convergence;
【Key words】 stiff impulsive differential equations; Runge-Kutta methods; stability; asymptotic stability; convergence;
【基金】 国家自然科学基金项目(11571291)
- 【文献出处】 湘潭大学学报(自然科学版) ,Journal of Xiangtan University(Natural Science Edition) , 编辑部邮箱 ,2020年02期
- 【分类号】O241.8
- 【被引频次】1
- 【下载频次】81