节点文献

基于PSOEM优化LSSVM的接地网腐蚀预测研究

Research on Corrosion Prediction of Grounding Grid Based on PSOEM-optimized LSSVM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王小军高广德吴田谢枭王若昕沈丹青何丽娜刘闯

【Author】 WANG Xiaojun;GAO Guangde;WU Tian;XIE Xiao;WANG Ruoxin;SHEN Danqing;HE Lina;LIU Chuang;Colloge of Electrical Engineering&New Energy,China Three Gorges University;State Grid Jingmen Power Supply Company;

【机构】 三峡大学电气与新能源学院国网荆门供电公司

【摘要】 通过腐蚀试验获得60组110 kV变电站土壤成分数据及相应的金属片腐蚀速率,对60组样本数据进行灰色关联分析,结果表明Cl~-含量、pH值、含水量和含盐量是接地网腐蚀的主要原因,并以此作为接地网腐蚀预测模型选择支持向量的依据。为提高最小二乘支持向量机模型的预测精度,采用扩展记忆粒子群算法对最小二乘支持向量机的惩罚因子和核函数参数进行寻优,建立基于PSOEM优化LSSVM的接地网腐蚀预测模型。应用试验数据进行仿真分析,结果表明,PSOEM-LSSVM模型在训练拟合和外推预测方面效果更好。

【Abstract】 The data of soil composition and the corrosion rate of metal sheet in 60 groups of 110 kV substation is obtained through corrosion test. These sample data are analyzed by grey relation,showing that Cl-content,pH value,water content and salt content is the main reasons for the corrosion of grounding grid,based on which support vectors are selected for a prediction model. In order to improve the prediction accuracy of LSSVM model,particle swarm optimization with extended memory is used to optimize the penalty factor and kernel function parameters of the LSSVM. The corrosion prediction model of the grounding grid based on PSOEM-optimized LSSVM is established,and the simulation is done with the test data. The results show that the PSOEM-LSSVM model is better in training and fitting and prediction by extrapolation.

【基金】 国家自然科学基金资助项目(51807110)~~
  • 【分类号】TP18;TM862
  • 【被引频次】13
  • 【下载频次】141
节点文献中: 

本文链接的文献网络图示:

本文的引文网络