节点文献
基于DeepLink的社交网络去匿名方法
De-anonymiation method for networks based on DeepLink
【摘要】 现有的社交网络去匿名方法主要是基于网络结构,对网络结构进行学习与表示是去匿名的关键。用户身份链接(user identity linkage)的目的是检测来自不同社交网络平台的同一个用户。基于深度学习的跨社交网络用户对齐技术,很好地学习了不同社交网络的结构特征,实现了跨社交网络的用户对齐。将该技术用于同一社交网络匿名用户识别,实验结果优于传统去匿名方法。
【Abstract】 Existing de-anonymization technologies are mainly based on the network structure. To learn and express network structure is the key step of de-anonymization. The purpose of the user identity linkage is to detect the same user from different social networking platforms. DeepLink is a cross-social network user alignment technology. It learns the structural of the social networks and align anchor nodes through deep neural networks. DeepLink was used to identify de-anonymization social networks, and the results outperforms the traditional methods.
【Key words】 anonymization; de-anonymization; privacy; social network; graph data;
- 【文献出处】 网络与信息安全学报 ,Chinese Journal of Network and Information Security , 编辑部邮箱 ,2020年04期
- 【分类号】O157.5;TP309
- 【被引频次】2
- 【下载频次】181