节点文献

基于Jacobi算法求解结构张量的置信扩散滤波方法

Confidence diffusion filtering method based on Jacobi algorithm applied to structure tensor

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 饶溯李录明刘力辉胡滨冯鑫

【Author】 RAO Su;LI Luming;LIU Lihui;HU Bin;FENG Xin;CNOOC International Ltd.;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology);Rockstar Petroleum Technology Ltd of Beijing;

【机构】 中海石油国际能源服务(北京)有限公司油气藏地质及开发工程国家重点实验室(成都理工大学)北京诺克斯达石油科技有限公司

【摘要】 在非线性各向异性扩散滤波基础上,采用Jacobi算法求解结构张量D中的特征分量的特征值u,并建立线状置信度Cline求解扩散滤波系数λ,将特征值u和扩散滤波系数λ代入扩散方程来求解该方程,实现了置信扩散滤波方法,该方法的理论不同于常规基于结构张量的扩散滤波方法。通过对加噪的理论模型进行试验,证明了该方法的有效性,并对比带通滤波方法进行频谱分析,同时利用SNR(信噪比)、MSE(均方误差)曲线分析了迭代次数对处理结果的影响。最后将该方法应用于实际叠前和叠后地震资料,较好地衰减了随机噪声、保留了地震有效信号,有效地提高了地震资料的信噪比。该方法相比常规基于结构张量的扩散滤波方法,对噪声有更好压制效果。

【Abstract】 The method on the basis of nonlinear anisotropic diffusion filtering, can use Jacobi algorithm to solve the eigenvalue of the eigen components in the structure tensor D. A linear confidence measure Cline is built to solve the diffusion filter coefficients λ. The eigenvalue and the diffusion filter coefficients λ are substituted into the diffusion equation to solve the equation, which can realize the confidence diffusion filtering method. The theory of this method is different from the conventional diffusion filtering method based on structure tensor. Processing a theory record of including random noise model, proves the validity of the method, and analyzes the frequency spectrum by comparing the band-pass filtering method. On the other side taking advantage of the curves of SNR(signal-to-noise ratio) and MSE(mean square error), the relationship between the number of iterations and the results are analyzed. Finally, this method which is applied to real pre-stack and post-stack seismic data, can attenuate the random noise, retain the effective seismic signal and effectively improve the SNR of seismic data. This method has better noise suppression effect than the conventional diffusion filtering method based on structure tensor.

【基金】 国家油气重大专项课题(2017ZX05032-003)
  • 【文献出处】 物探化探计算技术 ,Computing Techniques for Geophysical and Geochemical Exploration , 编辑部邮箱 ,2020年02期
  • 【分类号】P631.44
  • 【下载频次】65
节点文献中: 

本文链接的文献网络图示:

本文的引文网络