节点文献
基于多特征的DNS异常检测技术研究
Research on DNS anomaly detection technology based on multiple features
【摘要】 基于校园网实际域名系统(domain name system, DNS)服务日志,研究DNS异常行为的检测方法,提出针对DNS源IP异常检测的基于多维时序特征的局部异常因子检测(local outlier factor, LOF)算法,并在此基础上,提出基于多特征的域名异常分析方法,以实现更为精准的DNS异常识别,保障校园网的稳定和安全.
【Abstract】 In this paper, we propose a local outlier factor(LOF) algorithm based on multi-dimensional timing characteristics for detecting abnormal source IPs of DNS. The algorithm is used to identify abnormal source IPs of the DNS traffic of a campus network. Based on the algorithm, we further introduce a multi-feature-based abnormal domain name detection method and efficiently improve the detection of DNS anomalies of the campus network.
【关键词】 数据挖掘;
DNS日志;
时间序列;
行为模式;
异常检测;
【Key words】 data mining; domain name system(DNS) log; time sequence; behavior mode; anomaly detection;
【Key words】 data mining; domain name system(DNS) log; time sequence; behavior mode; anomaly detection;
- 【文献出处】 深圳大学学报(理工版) ,Journal of Shenzhen University(Science and Engineering) , 编辑部邮箱 ,2020年S1期
- 【分类号】TP393.08
- 【被引频次】7
- 【下载频次】196