节点文献
非线性Klein-Gordon方程的变网格有限元方法(英文)
NONCONFORMING FINITE ELEMENT METHOD FOR THE NONLINEAR KLEIN-GORDON EQUATION WITH MOVING GRIDS
【摘要】 本文研究了非线性Klein-Gordon方程问题,利用Crank-Nicolson变网格非协调有限元方法,不需要传统的Riesz投影算子,利用插值技巧和单元的特殊性质,得到了相应的收敛性分析和最优误差估计.
【Abstract】 In this paper, the nonlinear Klein-Gordon equation is studied. By using the Crank-Nicolson moving grid nonconforming finite element method, the traditional Riesz projection operator is not needed, interpolation techniques and special properties of the element are used to obtain the corresponding convergence analysis and optimal error estimation.
【关键词】 Klein-Gordon方程;
各向异性;
变网格;
非协调;
Crank-Nicolson格式;
【Key words】 Klein-Gordon equation; anisotropy; moving grids; nonconforming; Crank-Nicolson scheme;
【Key words】 Klein-Gordon equation; anisotropy; moving grids; nonconforming; Crank-Nicolson scheme;
【基金】 Supported by Educational Commission of Henan Province (19A110031)
- 【文献出处】 数学杂志 ,Journal of Mathematics , 编辑部邮箱 ,2020年04期
- 【分类号】O241.82
- 【下载频次】51