节点文献
基于序方法的Hilfer分数阶积分微分方程的逼近能控性
Approximate Controllability of Hilfer Fractional Integro-Differential Equations Using Sequence Method
【摘要】 已有对分数阶微分方程的逼近能控性研究大都假设非线性项是一致有界的,并且相应的分数阶线性系统是逼近能控的.然而,这些假设条件太强.该文提出的方法不需要这些假设条件,利用序方法研究了Hilfer分数阶积分微分方程的逼近能控性.
【Abstract】 Existing works on approximate controllability of fractional differential equations often assume that the nonlinear item is uniformly bounded and the corresponding fractional linear system is approximate controllable,which is,however,too constrained.In this paper,we omit these two assumptions and investigate the approximate controllability of Hilfer fractional integro-differential equations using sequence method.
【关键词】 逼近能控性;
Hilfer分数阶导数;
分数阶积分微分方程;
【Key words】 Approximate controllability; Hilfer fractional derivative; Fractional integro-differential equations;
【Key words】 Approximate controllability; Hilfer fractional derivative; Fractional integro-differential equations;
【基金】 国家自然科学基金(61671002)~~
- 【文献出处】 数学物理学报 ,Acta Mathematica Scientia , 编辑部邮箱 ,2020年05期
- 【分类号】O175.6
- 【被引频次】1
- 【下载频次】63