节点文献

基于残差网络的高温合金微观组织图像分割方法

Microstructure Image Segmentation of Superalloy Based on Res_Unet

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张利欣车世界徐正光付超袁立边胜琴

【Author】 ZHANG Li-xin;CHE Shi-jie;XU Zheng-guang;FU Chao;YUAN Li;BIAN Sheng-qin;School of Automation and Electrical Engineering;Beijing State Key Laboratory for Advanced Metals and Materials;School of Computer and Communication Engineering,University of Science & Technology Beijing;

【机构】 北京科技大学自动化学院北京科技大学新金属材料国家重点实验室北京科技大学计算机学院

【摘要】 材料微观组织图像分析是材料研究的重要环节,其分析方法的精准性和快速性对新材料的设计、研制和现有材料的优化、寿命评价都非常重要。因此,如何建立更快速更精准的微观组织分割方法成为微观组织图像分析和性能评价的关键。针对传统的微观组织图像分割技术对于高温合金材料分析精度不高等问题,通过对卷积神经网络结构进行优化,提出了一种基于Res_Unet网络的微观组织图像分割方法。实验验证结果表明,本文的方法不仅解决了深度学习在材料组织图像小样本数据上的实现问题,还显著提高了材料微观组织图像的分割精度。

【Abstract】 Analyzing material microstructure images is an important part of study on material performance. The accuracy and celerity of analysis methods have an important effect on design and development of new materials,the optimization of current materials,and the evaluation of their life. Therefore,how to establish a faster and more accurate microstructure segmenting method becomes the key for analyzing microstructure images and evaluating performance. Aiming at the problem that the traditional microstructure image segmenting technology is not accurate for analyzing Ni-based superalloy,a convolutional neural network was optimized and a microstructure image segmenting method was proposed based on Res_Unet network. In addition,the new method integrates network improvement and data enhancement in the meantime. Through the experiment on Ni-based superalloy microstructure image,this method solved the problem of application of deep learning for the small sample data of material structure images,and improved significantly the segmentation accuracy of material microstructure images.

【基金】 国家重点研发计划(2017YFB0304605-05);国家高技术研究发展计划(2012AA03A513)
  • 【文献出处】 科学技术与工程 ,Science Technology and Engineering , 编辑部邮箱 ,2020年01期
  • 【分类号】TG132.3;TP391.41;TP18
  • 【被引频次】10
  • 【下载频次】305
节点文献中: 

本文链接的文献网络图示:

本文的引文网络