节点文献
基于语义元数据的医养数据融合研究与实现
RESEARCH AND IMPLEMENTATION OF MEDICAL AND PENSION DATA FUSION BASED ON SEMANTIC METADATA
【摘要】 传统的数据融合系统在进行医养数据融合时由于缺乏灵活性和扩展性,存在无法有效解决数据模型不统一、数据质量较差、无法进行统一可视化和数据访问等问题。针对以上问题,基于五元组表示的语义元数据,对数据模型、清洗和融合规则、数据可视化和访问进行建模和描述,研究并实现了医养数据融合系统,提供基于五元组描述的统一数据建模模型、数据清洗融合模型、数据可视化和访问模型。应用案例和实验结果表明,采用该系统能够动态进行建模和规则定制,满足区域医养数据融合对灵活性和扩展性的要求,同时满足对一定数据量下的处理响应时间的要求。
【Abstract】 Due to the lack of flexibility and expansibility in medical and pension data fusion, the traditional data fusion system cannot effectively solve the problems of inconsistent data model, poor data quality, unified visualization and data access. Aiming at the above problems, based on the semantic metadata represented by the 5-tuple, we modeled and described the data model, cleaning and fusion rules and data visualization and access. We studied and implemented the medical and pension data fusion system, which provided unified data modeling model, data cleaning and fusion model and data visualization and access model based on the description of the 5-tuple. The application cases and experimental results show that this system can be used for dynamic modeling and rule customization, which can meet the requirements of flexibility and expansibility of regional medical and pension data fusion, as well as the requirements of processing response time under a certain amount of data.
【Key words】 Intelligent pension; Integration of medical and pension; Data fusion; Data visualization; Semantic metadata;
- 【文献出处】 计算机应用与软件 ,Computer Applications and Software , 编辑部邮箱 ,2020年05期
- 【分类号】TP391.1;R197.1
- 【被引频次】3
- 【下载频次】262