节点文献

具有多孔微结构的高导电石墨烯组装膜及其自支撑式超低功率应变传感器应用(英文)

High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王哲李鹏宋荣国钱伟周煌王乾龙王永曾显词任琳晏石林木士春何大平

【Author】 Zhe Wang;Peng Li;Rongguo Song;Wei Qian;Huang Zhou;Qianlong Wang;Yong Wang;Xianci Zeng;Lin Ren;Shilin Yan;Shichun Mu;Daping He;Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology;Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, School of Science, Wuhan University of Technology;State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology;

【通讯作者】 任琳;何大平;

【机构】 Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of TechnologyHubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, School of Science, Wuhan University of TechnologyState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology

【摘要】 石墨烯由于其优越的机械性能和高导电性,成为构造高性能应变传感器的理想材料.然而,在将石墨烯组装成宏观材料的过程中,其电导率显著降低.而且,繁琐的制备过程阻碍了石墨烯应变传感器的应用.本文介绍了一种通过高温热处理法制备的具有多孔微结构和高导电率的自支撑式石墨烯组装膜(GAF). GAF表现出良好的热稳定性.就应变传感器敏感材料的电导率而言, GAF高于绝大多数报道的碳纳米管和石墨烯等先进碳材料.这些优点使GAF应变传感器可以用于检测气流和声音振动,并实现超低功耗.与大多数已报道的应变传感器相比, GAF应变传感器无需任何柔性基底,大大简化了制备过程.此外,本文还研究了GAF用作压力传感器且功率可低至~4.7μW.这项工作为制备具有超低功耗的先进传感器以及开发节能的柔性电子设备提供了新的思路.

【Abstract】 Graphene emerges as an ideal material for constructing high-performance strain sensors,due to its superior mechanical property and high conductivity.However,in the process of assembling graphene into macroscopic materials,its conductivity decreases significantly.Also,tedious fabrication process hinders the application of graphene-based strain sensors.In this work,we report a freestanding graphene assembled film(GAF) with high conductivity((2.32±0.08) × 105 S m-1).For the sensitive materials of strain sensors,it is higher than most of reported carbon nanotube and graphene materials.These advantages enable the GAF to be an ultra-low power consumption strain sensor for detecting airflow and vocal vibrations.The resistance of the GAF remains unchanged with increasing temperature(20-100℃),exhibiting a good thermal stability.Also,the GAF can be used as a strain sensor directly without any flexible substrates,which greatly simplifies the fabrication process in comparison with most reported strain sensors.Additionally,the GAF used as a pressure sensor with only~4.7 μW power is investigated.This work provides a new direction for the preparation of advanced sensors with ultra-low power consumption,and the development of flexible and energy-saving electronic devices.

【基金】 supported by the National Natural Science Foundation of China (51701146, 51672204);the Fundamental Research Funds for the Central Universities (WUT:2017IB015);Foundation of National Key Laboratory on Electromagnetic Environment Effects (614220504030617)
  • 【文献出处】 Science Bulletin ,科学通报(英文版) , 编辑部邮箱 ,2020年16期
  • 【分类号】TP212;TQ127.11;TB383.2
  • 【被引频次】5
  • 【下载频次】132
节点文献中: 

本文链接的文献网络图示:

本文的引文网络