节点文献

基于K-means聚类挖掘智能机器人领域技术创新人才

Mining Technological Innovation Talents in Intelligent Robot Field Based on K-means Algorithms

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵宁赵翀翟凤勇刘伟郭伟

【Author】 Zhao Ning;Zhao Chong;Zhai Fengyong;Liu Wei;Guo Wei;

【机构】 哈尔滨工业大学图书馆哈尔滨工业大学管理学院哈尔滨联通公司哈尔滨工业大学机器人研究所

【摘要】 以智能机器人领域为例,借助机器学习的方法挖掘技术创新人才,消除专家分类的主观性。通过专利信息构建技术创新人才评价指标体系,结合主成分分析、K-means聚类,进行技术创新人才有效分类;利用DWPI手工代码挖掘智能机器人领域对应的创新人员及相应的技术团队成员,对于技术创新人才分类有进一步优化空间。K-means聚类改进了传统的识别方法,突破人工统计的局限,可以处理数量级更大的数据,对数据挖掘可以进行及时、准确、直观的分析。

【Abstract】 Taking the intelligent robot field as an example, by means of machine learning, the subjectivity of expert classification can be eliminated. The evaluation index system of technological innovation talents is constructed by patent information, and the effective classification of technological innovation talents is carried out by combining principal component analysis and K-means clustering. The corresponding innovation personnel and corresponding technical team members in the field of intelligent robot are mined by DWPI manual code, which has further optimization space for the classification of technological innovation talents. K-means clustering improves the traditional recognition method, breaks through the limitations of artificial statistics. It can deal with larger data of order of magnitude, and can analyze data mining timely, accurately and intuitively.

【基金】 2018年ISTIC-CLARIVATEANALYTICS科学计量学联合实验室开放基金项目“基于专利分析对智能机器人领域创新人才的挖掘和评价”(项目编号:IC20180014)研究成果之一
  • 【文献出处】 新世纪图书馆 ,New Century Library , 编辑部邮箱 ,2020年03期
  • 【分类号】G255.53;TP242.6
  • 【被引频次】2
  • 【下载频次】154
节点文献中: 

本文链接的文献网络图示:

本文的引文网络