节点文献
基于神经网络的并网光伏电站自适应距离保护
Adaptive Distance Protection of Grid-Connected Photovoltaic Power Plant Based on Neural Network
【摘要】 光伏电站并入配电网后,原先配电网的距离保护动作特性发生变化,其分支系数随着光伏电站的出力变化而变化,给含有分布式电源的配电网保护整定计算带来困难。针对某实际光伏电站结构,分析了光伏电站并网后作为分布式电源对配电网距离保护的影响,利用BP神经网络建立光伏电站的等效阻抗模型,通过BP神经网络建立其输出功率与等效阻抗的关系,并以此得到自适应距离保护的整定方法,实例验证了该方法的正确性与实用性。
【Abstract】 The distance protection action characteristics of the original distribution network will change after the photovoltaic power station is integrated into the distribution network,and its branching coefficient will change with the output of the photovoltaic power station,which makes it difficult to calculate the distribution protection of distributed power grids.Aiming at the structure of certain actual photovoltaic power station,this paper analyzed the impacts of distributed generation on the distribution network distance protection,used BP neural network to establish the equivalent impedance model in photovoltaic power station and the relationship between the output power and the equivalent impedanceby BP neural network,and obtained the tuning method of adaptive distance protection on this account.The correctness and practicability of this method are verified by an example.
【Key words】 photovoltaic power generation; distribution network; branching coefficient; distance protection; neural network;
- 【文献出处】 电工电气 ,Electrotechnics Electric , 编辑部邮箱 ,2020年04期
- 【分类号】TP183;TM615
- 【被引频次】6
- 【下载频次】188