节点文献
基于计算机视觉的轴承滚子表面缺陷在线检测系统
Online Detection System of Bearing Roller’s Surface Defects Based on Computational Vision
【摘要】 通过分析轴承滚子中最常见的几种表面缺陷类型,设计了针对性的缺陷检测算法,将传统计算机视觉方法与深度学习相结合,并采用改进的RetinaNet模型,实现了轴承滚子的表面缺陷检测。实验结果表明:文中方法的准确率达95%以上;相较于传统的缺陷检测方法,文中方法在准确率、召回率与F1-score上均有一定提升。
【Abstract】 A reasonable detection algorithm for surface defects in bearing rollers was designed based on the analysis of some most common surface defect types. It combines the traditional computer vision method with deep learning and adopts the improved RetinaNet model to realize the surface defect detection of bearing rollers. The experimental results show that the accuracy of this method is more than 95%. As compared with the traditional defect detection method, the proposed detection algorithm can make improvement in accuracy, recall rate and F1-score.
【关键词】 轴承;
表面缺陷;
在线检测;
深度学习;
卷积神经网络;
【Key words】 bearing; surface defect; online detection; deep learning; convolution neural network;
【Key words】 bearing; surface defect; online detection; deep learning; convolution neural network;
【基金】 国家自然科学基金资助项目(51973068);国家重点研发计划项目(2019YFC1908201)~~
- 【文献出处】 华南理工大学学报(自然科学版) ,Journal of South China University of Technology(Natural Science Edition) , 编辑部邮箱 ,2020年10期
- 【分类号】TH133.3;TP391.41
- 【被引频次】9
- 【下载频次】580