节点文献

多源数据的交通状态判别及新增车辆拥堵预测

Traffic state discrimination and congestion prediction of new added vehicles based on multi-source data

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 罗秋琪张小晶吴智胜韩荣青

【Author】 Luo Qiuqi;Zhang Xiaojing;Wu Zhisheng;Han Rongqing;College of Geography and Environment, Shandong Normal University;

【机构】 山东师范大学地理与环境学院

【摘要】 交通状况评价和拥堵预测,是交通管理、调节和诱导的重要依据。通过融合卡口监测数据和出租车为主的浮动车数据,应用数据挖掘的思想构建密度聚类模型,以确定交通状态分类的阈值,从而刻画实际状态;其次建立车辆数-道路流量-道路平均速度关系模型,以预测新增车辆汇入路段后对道路状态的影响。结果表明:多源数据引入交通状态判别后,更有助于精确地划分状态,弥补了单一数据的不足;基于密度的聚类方法,能更有效地刻画不同等级道路的状态。在深圳市的分析验证中结果较可靠,对于助力交通拥堵预判以及缓解、提升智慧交通和智能城市发展意义重大。

【Abstract】 Traffic condition evaluation and congestion prediction are the basis for traffic management, regulation and guidance. In this paper, the bayonet data and taxi-dominated floating vehicle data are fused, and the density clustering model is constructed using the idea of data mining to determine the threshold of traffic status classification, thereby describing the actual state. Secondly, the vehicle number-flow-average speed relationship model is established to predict the impact of the newly added vehicles on the road state. The results show that the introduction of multi-source data to traffic state discrimination is more helpful to accurately divide the state and makes up for the deficiency of single data. Based on the density clustering method, the state of roads of different levels can be described more effectively. The results of this study are relatively reliable in the analysis and verification of Shenzhen, which is of great significance to help predict traffic congestion and improve the development of smart transportation and smart cities.

【基金】 国家重点研究计划项目,空间地理信息监测(2016YFC1402701);国家自然基金面上项目,室内多源异构时空数据一体化建模与联合查询(41771436);2019年大学生创新创业训练山东省级立项项目(S201910445024)
  • 【文献出处】 信息通信 ,Information & Communications , 编辑部邮箱 ,2020年10期
  • 【分类号】U495
  • 【被引频次】1
  • 【下载频次】333
节点文献中: 

本文链接的文献网络图示:

本文的引文网络