节点文献
Double-slit interference of single twisted photons
【摘要】 Optical orbital angular momentum(OAM) is a special property of photons and has evoked research onto the light–matter interaction in both classical and quantum regimes. In classical optics, OAM is related to an optical vortex with a helical phase structure. In quantum optics, photons with a twisted or helical phase structure will carry a quantized OAM. To our knowledge, however, so far, no experiment has demonstrated the fundamental property of the OAM at the single-photon level. In this Letter, we have demonstrated the average photon trajectories of twisted photons in a double-slit interference. We have experimentally captured the double-slit interference process of twisted photons by a time-gated intensified charge-coupled device camera, which is trigged by a heralded detection. Our work provides new perspectives for understanding the micro-behaviors of twisted particles and enables new applications in imaging and sensing.
【Abstract】 Optical orbital angular momentum(OAM) is a special property of photons and has evoked research onto the light–matter interaction in both classical and quantum regimes. In classical optics, OAM is related to an optical vortex with a helical phase structure. In quantum optics, photons with a twisted or helical phase structure will carry a quantized OAM. To our knowledge, however, so far, no experiment has demonstrated the fundamental property of the OAM at the single-photon level. In this Letter, we have demonstrated the average photon trajectories of twisted photons in a double-slit interference. We have experimentally captured the double-slit interference process of twisted photons by a time-gated intensified charge-coupled device camera, which is trigged by a heralded detection. Our work provides new perspectives for understanding the micro-behaviors of twisted particles and enables new applications in imaging and sensing.
【Key words】 orbital angular momentum; double-slit interference; twisted photons; helical phase;
- 【文献出处】 Chinese Optics Letters ,中国光学快报(英文版) , 编辑部邮箱 ,2020年10期
- 【分类号】O436.1
- 【被引频次】1
- 【下载频次】27