节点文献

基于多粒度聚类的测井曲线自动分层识别方法

Automatic layering recognition method for logging curves based on multi-granularity clustering

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 姬庆庆朱登明石敏王兆其周军

【Author】 Ji Qingqing;Zhu Dengming;Shi Min;Wang Zhaoqi;Zhou Jun;University of Chinese Academy of Sciences;Advanced Computing Research Laboratory,Institute of Computing Technology,Chinese Academy of Sciences;College of Control and Computer Engineering,North China Electric Power University;China Petroleum Logging Co.,Ltd.;

【机构】 中国科学院大学中国科学院计算技术研究所前瞻研究实验室华北电力大学控制与计算机工程学院中国石油集团测井有限公司

【摘要】 随着测井技术及大数据分析技术的快速发展,自动测井解释技术可以有效辅助人工快速开展储层划分、油水层解释等工作。为了提升储层划分及油水层识别准确度,本文提出了一种基于有监督学习的多粒度聚类识别方法,该方法通过对标准测井曲线及分层结果的学习提取不同分层测井曲线特征,在划分出储层的基础上再进行油水层识别。与已有方法相比,本文方法通过对真实测井曲线进行多种处理,从而融合曲线多层次特征,有利于取得更加准确的分层结果。实验结果表明,该方法可以对测井曲线进行自动分层,提高了曲线自动分层的效率,在真实测井曲线上能够取得较好的分层识别结果。

【Abstract】 With the rapid development of logging technology and big data analysis technology, automatic logging interpretation technology can effectively auxiliary artificial rapid reservoir classification and oil-water reservoir interpretation. In order to improve the accuracy of reservoir classification and oil-water layer identification, this paper gives a method based on multi-granularity of supervised learning. This method extracts the characteristics of different layers of logging curves by learning the standard logging curves and the layered results, and then identifies the oil and water layers based on the reservoir division. Compared with the existing methods, the proposed method can fully explore the characteristics of the real logging curve by processing the real logging curve through a variety of treatments, which is conducive to obtain more accurate stratification results. The experimental results show that the proposed method can automatically separate the logging curves, improve the efficiency of the automatic slicing of the curves, and can obtain good results of the layer identification on the real logging curves.

【基金】 国家重大科技专项(2017ZX05019005)资助项目
  • 【文献出处】 高技术通讯 ,Chinese High Technology Letters , 编辑部邮箱 ,2020年12期
  • 【分类号】P631.81
  • 【被引频次】1
  • 【下载频次】255
节点文献中: 

本文链接的文献网络图示:

本文的引文网络