节点文献
Senti-LSTM:一个基于递归神经网络的情感分析模型
Senti-LSTM:A Sentiment Analysis Model based on RNN
【摘要】 针对文本情感分析中情感极性的问题,提出一种改进型长短期记忆网络模型Senti-LSTM,该模型在现有LSTM网络单元中添加情感门,架构于Senti-LSTM之上的深度神经网络模型充分利用文本上下文信息、文本结构与情感语义等信息,实现更加有效的文本情感表示学习.实验结果表明,Senti-LSTM能够有效提升文本情感分类准确率,同时具有较强的鲁棒性.
【Abstract】 For sentiment polarity detection in text sequence,an improved long short-term memory unit,called Senti-LSTM,is proposed,which adds a sentiment gate in the classical LSTM.The deep neural network architecture based on Senti-LSTM can more effectively capture sentiment feature of text sequence through full utilization of context,semantic and structure information.Experimental results indicate that,Senti-LSTM can boost performance of sentiment analysis in terms of classification accuracy and robustness.
【关键词】 LSTM;
递归神经网络;
情感分析;
【Key words】 long short-term memory(LSTM); recursive neural network; sentiment analysis;
【Key words】 long short-term memory(LSTM); recursive neural network; sentiment analysis;
【基金】 国家自然科学基金资助项目(61962038);广西多源信息挖掘与安全重点实验室开放基金项目(MIMS17-01);福建省自然科学基金资助项目(2017J01497);广西八桂学者创新团队(201979)
- 【文献出处】 福建师范大学学报(自然科学版) ,Journal of Fujian Normal University(Natural Science Edition) , 编辑部邮箱 ,2020年01期
- 【分类号】TP391.1;TP183
- 【被引频次】7
- 【下载频次】247