节点文献

基于卷积神经网络的植物叶片树种识别研究与实现

Research and Realization of Wood SpeciesRecognition Based on Convolutional Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 边缘孔小莹张莉边世正李瑞改

【Author】 BIAN Yuan;KONG Xiaoying;ZHANG Li;BIAN Shizheng;LI Ruigai;College of Information and Computer Engineering,Northeast Forestry University;

【通讯作者】 李瑞改;

【机构】 东北林业大学信息与计算机工程学院

【摘要】 随着人工智能的迅速发展,深度学习方向的算法性能逐渐提高,推动了深度学习在各个领域的应用。本文使用卷积神经网络算法建立树种识别模型,以叶片作为模型输入数据。本文所建立的模型在公开的Flavia数据集中的识别准确率在90%以上,达到了应用要求,本模型的设计对林学有一定的实际应用价值。

【Abstract】 As the field of artificial intelligence develop rapidly,the performance of deep learning algorithm is constantly improved,the application of deep learning in various fields is promoted greatly. In this paper,convolution neural network algorithm is used to establish tree species identification model,and leaves are used as model input data. The model established in this paper Flavia The recognition accuracy of data set is 90% Above,the application requirements are met. The design of this model has certain practical application value to forestry.

【基金】 2019年度东北林业大学省级创新项目(201910225226,SJGY20170145)
  • 【文献出处】 智能计算机与应用 ,Intelligent Computer and Applications , 编辑部邮箱 ,2020年10期
  • 【分类号】TP391.41;TP183;S718.4
  • 【被引频次】4
  • 【下载频次】237
节点文献中: 

本文链接的文献网络图示:

本文的引文网络