节点文献

基于SCADA数据驱动的风力机齿轮箱运行状态评估及预警

Operation State Evaluation and Early Warning of Wind Turbine Gearbox Based on SCADA Data Drive

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 段巍韩旭马良玉刘帅刘卫亮

【Author】 DUAN Wei;HAN Xu;MA Liangyu;LIU Shuai;LIU Weiliang;Department of Mechanical Engineering,North China Electric Power University;Hebei Technology Innovation Center of Simulation & Optimized Control for Power Generation,North China Electric Power University;

【机构】 华北电力大学机械工程系河北省发电过程仿真与优化控制技术创新中心(华北电力大学)

【摘要】 目前对于风力机齿轮箱的预警主要是以分析振动信号和温度参数为主,但前者需要安装额外的传感器,成本较高,后者有一定的时间延迟。因此提出了基于风力机运行参数和BP神经网络的风力机齿轮箱运行状态评估与预警模型,对风力机全工况下的SCADA原始数据进行清洗和归一化处理,通过参数间相关性分析建立线下预测模型;采用滑动窗口模型计算正常运行状态下的评价指标,基于小概率事件假设,获得评价指标的阈值,实现线上监测和运行状态评估。并以某风电场1.5 MW风力机齿轮箱子系统故障为例验证该方法,结果表明:该预警模型可以实现对齿轮箱子系统运行异常状态的识别和早期预警,且不需要对异常数据或相关故障的先验知识进行挖掘和训练。

【Abstract】 At present, the early warning for wind turbine gearbox mainly relies on the analysis of vibration signals and temperature. However, the former requires additional sensors, which leads to high cost, while the latter has a certain delay. Therefore, this paper proposes a wind turbine gearbox operating state evaluation and early warning model of wind turbine gearbox based on operating parameters and BP neural network. The original SCADA data of the wind turbine under the whole operation condition are cleaned and normalized, and then the off-line fault prediction model of the wind turbine is established through the correlation analysis of parameters. The sliding window model is used to calculate the evaluation index under normal operation state, the threshold value of the evaluation index of the wind turbine is obtained based on the hypothesis of small probability events, and finally, the on-line monitoring and operation state assessment are realized. Taking 1.5 MW wind turbine gearbox as the example, the results of the study show that the prediction model can realize the recognition and early warning of the abnormal state of the wind turbine gearbox, and it does not need any mining and training of the abnormal data or the prior knowledge of related faults.

【基金】 北京市自然科学基金资助项目(4182061)
  • 【文献出处】 电力科学与工程 ,Electric Power Science and Engineering , 编辑部邮箱 ,2020年11期
  • 【分类号】TM315;TP183
  • 【被引频次】1
  • 【下载频次】256
节点文献中: 

本文链接的文献网络图示:

本文的引文网络