节点文献

基于贝叶斯网络的空调冷水阀故障检测与诊断

A Fault Detection and Diagnosis Technology for Chilled Water Valve Based on Bayesian Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张慧杨学宾方兴余莎莎晏新奇

【Author】 ZHANG Hui;YANG Xuebin;FANG Xing;YU Shasha;YAN Xinqi;College of Environmental Science and Engineering,Donghua University;Key Laboratory of Heating and Air Conditioning,Education Department of Henan Province;China Ship Development and Design Center;

【通讯作者】 杨学宾;

【机构】 东华大学环境科学与工程学院河南省高等学校供热空调重点学科开放实验室中国舰船研究设计中心

【摘要】 针对空调系统运行中所产生的很多不确定性故障问题,建立了贝叶斯网络模型,开发了多故障状态的贝叶斯概率计算模型,利用Leaky Noisy-Max模型进行贝叶斯网络参数学习,提出了基于故障特征准则和阈值判别的故障检测与诊断技术。采用现场实测数据,以冷水阀故障为例,验证了该技术的可行性。结果表明,该技术能够诊断出冷水阀故障,诊断结果能够快速定位故障产生源,从而提高空调运行系统的稳定性。

【Abstract】 In terms of many uncertain faults in the operation of the air conditioning system,the Bayesian network model was established and the Bayesian probability calculation model of multi-fault state was developed.The Leaky Noisy-Max model was used to learn Bayesian networks parameters.The fault detection and diagnosis technology based on fault feature criterion and threshold discrimination has been proposed.Using the field measured data,the proposed fault detection and diagnosis technology was applied to the chilled water valve.The results show that the technology can diagnose the chilled water valve,and the diagnosis results can quickly locate the fault source,thus improving the stability of the air conditioning system.

【基金】 国家重点研发计划资助项目(2018YFC0705305);河南省高等学校供热空调重点学科开放实验室研究基金资助项目(2017HAC102)
  • 【文献出处】 东华大学学报(自然科学版) ,Journal of Donghua University(Natural Science) , 编辑部邮箱 ,2020年01期
  • 【分类号】TU831
  • 【被引频次】1
  • 【下载频次】245
节点文献中: 

本文链接的文献网络图示:

本文的引文网络