节点文献

融合唤醒阈值与半休眠模式的云虚拟机调度策略

Cloud virtual machine scheduling strategy with awakening threshold and semi-sleep mode

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李吉良秦兵李文江金顺福王志斌

【Author】 LI Jiliang;QIN Bing;LI Wenjiang;JIN Shunfu;WANG Zhibin;54th Research Institute,Electronics Technology Group Corporation;State Key Laboratory of Communication Network Information Transmission and Distribution Technology;School of Information Science and Engineering,Yanshan University;School of Electrical Engineering,Yanshan University;

【通讯作者】 王志斌;

【机构】 中国电子科技集团公司第五十四研究所通信网信息传输与分发技术国家重点实验室燕山大学信息科学与工程学院燕山大学电气工程学院

【摘要】 为了满足云用户请求响应要求的同时进一步提高云平台能量效率,融合唤醒阈值与半休眠模式,提出一种新型的云虚拟机调度策略。在一个半休眠周期结束时刻,如果缓冲区中等待的云用户请求数达到阈值N,虚拟机则由半休眠状态转入唤醒状态,以正常速率为云用户请求提供服务;否则,虚拟机将重新开始一次新的半休眠周期,持续为云用户请求提供低速服务。根据云虚拟机调度策略的原理,建立一个具有N策略和多重异步工作休假的多服务台排队模型。利用拟生灭过程和矩阵几何解方法,推导云用户请求平均逗留时间与系统节能率等性能指标。综合数值分析实验和系统仿真实验,评估云虚拟机调度策略的系统性能。构造成本函数,利用蚁群智能寻优算法,给出云虚拟机调度策略的优化方案。

【Abstract】 In order to meet the response performance of cloud requests,as well as further improve the energy efficiency of the cloud platform,a novel virtual machine(VM) scheduling strategy with awakening threshold and semi-sleep mode is proposed.At the end instant of a semi-sleep period,if the number of cloud requests waiting in the buffer reaches the threshold N,the VM will convert to awake state from semi-sleep state,and then provide service at the normal service rate.Otherwise,the VM will restart a new semi-sleep period and continue to provide service at the lower service rate.According to the principle of the proposed strategy,a multi-server queueing model with N-policy and multiple asynchronous working vacations is established.Using the quasi-birth-and-death processes and the matrix-geometric solution method,the performance measures,such as the average latency of cloud requests and the energy-saving rate of system,are derived.Experimental results with analysis and simulation are provided to evaluate the system performance of the proposed strategy.In addition,by constructing the system cost function and using ant colony intelligent optimization algorithm,the optimization scheme of the VM scheduling strategy is presented.

【基金】 国家自然科学基金资助项目(61872311);通信网信息传输与分发技术重点实验室开放课题资助项目(KX172600025)
  • 【文献出处】 燕山大学学报 ,Journal of Yanshan University , 编辑部邮箱 ,2020年04期
  • 【分类号】TP302
  • 【被引频次】4
  • 【下载频次】97
节点文献中: 

本文链接的文献网络图示:

本文的引文网络